750 likes | 884 Views
Topic 27. Table of Contents. Topic 27. Topic 27: Hydrocarbons. Basic Concepts. Additional Concepts. Hydrocarbons: Basic Concepts. Topic 27. Functional Groups.
E N D
Topic 27
Table of Contents Topic 27 Topic 27: Hydrocarbons Basic Concepts Additional Concepts
Hydrocarbons: Basic Concepts Topic 27 Functional Groups • Thousands of different hydrocarbons exist because carbon atoms can link together to form straight and branched chains, rings of many sizes, and molecules with single, double, and triple bonds. Click box to view movie clip.
Hydrocarbons: Basic Concepts Topic 27 Functional Groups • But carbon atoms also can form strong covalent bonds with other elements, the most common of which are oxygen, nitrogen, fluorine, chlorine, bromine, iodine, sulfur, and phosphorus.
Hydrocarbons: Basic Concepts Topic 27 Functional Groups • Atoms of these elements occur in organic substances as parts of functional groups. • A functional group in an organic molecule is an atom or group of atoms that always reacts in a certain way. • The addition of a functional group to a hydrocarbon structure always produces a substance with physical and chemical properties that differ from those of the parent hydrocarbon.
Hydrocarbons: Basic Concepts Topic 27 Functional Groups • The symbols R and R′ represent any carbon chains or rings bonded to the functional group. • And * represents a hydrogen atom, carbon chain, or carbon ring.
Hydrocarbons: Basic Concepts Topic 27 Organic Compounds and Their Functional Groups
Hydrocarbons: Basic Concepts Topic 27 Organic Compounds and Their Functional Groups
Hydrocarbons: Basic Concepts Topic 27 Organic Compounds and Their Functional Groups
Hydrocarbons: Basic Concepts Topic 27 Organic Compounds and Their Functional Groups • The simplest functional groups can be thought of as substituent groups attached to a hydrocarbon. • The elements in group 7A of the periodic table—fluorine, chlorine, bromine, and iodine—are the halogens.
Hydrocarbons: Basic Concepts Topic 27 Organic Compounds Containing Halogens • Any organic compound that contains a halogen substituent is called a halocarbon. • If you replace any of the hydrogen atoms in an alkane with a halogen atom, you form an alkyl halide.
Hydrocarbons: Basic Concepts Topic 27 Organic Compounds Containing Halogens • Analkyl halide is an organic compound containing a halogen atom covalently bonded to an aliphatic carbon atom. • The first four halogens— fluorine, chlorine, bromine, and iodine—are found in many organic compounds.
Hydrocarbons: Basic Concepts Topic 27 Organic Compounds Containing Halogens • For example, chloromethane is the alkyl halide formed when a chlorine atom replaces one of methane’s four hydrogen atoms.
Hydrocarbons: Basic Concepts Topic 27 Organic Compounds Containing Halogens • An aryl halide is an organic compound containing a halogen atom bonded to a benzene ring or other aromatic group. • The structural formula for an aryl halide is created by first drawing the aromatic structure and then replacing its hydrogen atoms with the halogen atoms specified.
Hydrocarbons: Basic Concepts • An organic compound in which a hydroxyl group replaces a hydrogen atom of a hydrocarbon is called an alcohol. Topic 27 Alcohols • An oxygen-hydrogen group covalently bonded to a carbon atom is called a hydroxylgroup (—OH). • The general formula for an alcohol is ROH.
Hydrocarbons: Basic Concepts Topic 27 Ethers • An ether is an organic compound containing an oxygen atom bonded to two carbon atoms. • Ethers have the general formula ROR′.
Hydrocarbons: Basic Concepts Topic 27 Ethers • The simplest ether is one in which oxygen is bonded to two methyl groups. • Note the relationship between methanol and methyl ether in the following diagram.
Hydrocarbons: Basic Concepts Topic 27 Amines • Another class of organic compounds contains nitrogen. • Aminescontain nitrogen atoms bonded to carbon atoms in aliphatic chains or aromatic rings and have the general formula RNH2.
Hydrocarbons: Basic Concepts Topic 27 The Carbonyl Group • The arrangement in which an oxygen atom is double-bonded to a carbon atom is called a carbonyl group. • This group, which can be represented as shown below, is the functional group in organic compounds known as aldehydes and ketones.
Hydrocarbons: Basic Concepts Topic 27 Aldehydes • Analdehyde is an organic compound in which a carbonyl group located at the end of a carbon chain is bonded to a carbon atom on one side and a hydrogen atom on the other. • Aldehydes have the general formula *CHO, where * represents an alkyl group or a hydrogen atom.
Hydrocarbons: Basic Concepts Topic 27 Ketones • A carbonyl group also can be located within a carbon chain rather than at the end. • A ketoneis an organic compound in which the carbon of the carbonyl group is bonded to two other carbon atoms. • Ketones have the general formula.
Hydrocarbons: Basic Concepts Topic 27 Carboxylic Acids • A carboxylic acid is an organic compound that has a carboxyl group. • A carboxyl group consists of a carbonyl group bonded to a hydroxyl group. • Thus, carboxylic acids have the general formula.
Hydrocarbons: Basic Concepts Topic 27 Organic Compounds Derived From Carboxylic Acids • Several classes of organic compounds have structures in which the hydrogen or the hydroxyl group of a carboxylic acid is replaced by a different atom or group of atoms. • The two most common classes are esters and amides.
Hydrocarbons: Basic Concepts Topic 27 Ester • An ester is any organic compound with a carboxyl group in which the hydrogen of the hydroxyl group has been replaced by an alkyl group, producing the following arrangement.
Hydrocarbons: Basic Concepts Topic 27 Amides • An amide is an organic compound in which the —OH group of a carboxylic acid is replaced by a nitrogen atom bonded to other atoms. • The general structure of an amide is shown below.
Hydrocarbons: Basic Concepts Topic 27 Condensation Reactions • Many laboratory syntheses and industrial processes involve the reaction of two organic reactants to form a larger organic product, such as the aspirin. • This type of reaction is known as a condensation reaction.
Hydrocarbons: Basic Concepts Topic 27 Condensation Reactions • In a condensation reaction, two smaller organic molecules combine to form a more complex molecule, accompanied by the loss of a small molecule such as water.
Hydrocarbons: Basic Concepts Topic 27 Condensation Reactions • Typically, the molecule lost is formed from one particle from each of the reactant molecules.
Hydrocarbons: Basic Concepts Topic 27 Condensation Reactions • In essence, a condensation reaction is an elimination reaction in which a bond is formed between two atoms not previously bonded to each other.
Hydrocarbons: Basic Concepts Topic 27 Condensation Reactions • The most common condensation reactions involve the combining of carboxylic acids with other organic molecules. • A common way to synthesize an ester is by a condensation reaction between a carboxylic acid and an alcohol. • Such a reaction can be represented by the general equation.
Hydrocarbons: Basic Concepts Topic 27 Reactions of Organic Substances • All organic reactions result in a mixture of products. • The unwanted products must then be separated from the expected product, a process that often requires much time and manipulation.
Hydrocarbons: Basic Concepts Topic 27 Classifying Organic Reactions— Elimination reactions • One way to change an alkane into a chemically reactive substance is to form a second covalent bond between two carbon atoms, producing an alkene. • The formation of alkenes from alkanes is an elimination reaction, a reaction in which a combination of atoms is removed from two adjacent carbon atoms forming an additional bond between the carbon atoms.
Hydrocarbons: Basic Concepts Topic 27 Classifying Organic Reactions— Elimination reactions • The atoms that are eliminated usually form stable molecules, such as H2O, HCl, or H2. • Ethene, an important starting material in the chemical industry, is produced by the elimination of two hydrogen atoms from ethane.
Hydrocarbons: Basic Concepts Topic 27 Classifying Organic Reactions— Elimination reactions • A reaction that eliminates two hydrogen atoms is called a dehydrogenationreaction. • Note that the two hydrogen atoms form a molecule of hydrogen gas.
Hydrocarbons: Basic Concepts Topic 27 Classifying Organic Reactions— Elimination reactions • An elimination reaction in which the atoms removed from water is called a dehydrationreaction.
Hydrocarbons: Basic Concepts Topic 27 Classifying Organic Reactions— Elimination reactions • In the following dehydration reaction, the alcohol is broken down into an alkene and water.
Hydrocarbons: Basic Concepts Topic 27 Classifying Organic Reactions— Elimination reactions • The generic form of this dehydration reaction can be written as follows.
Hydrocarbons: Basic Concepts Topic 27 Addition reactions • Another type of organic reaction appears to be an elimination reaction in reverse. • An addition reaction results when other atoms bond to each of two atoms bonded by double or triple covalent bonds. • Addition reactions typically involve double-bonded carbon atoms in alkenes or triple-bonded carbon atoms in alkynes.
Hydrocarbons: Basic Concepts Topic 27 Addition reactions
Hydrocarbons: Basic Concepts Topic 27 Addition reactions • A hydration reaction is an addition reaction in which a hydrogen atom and a hydroxyl group from a water molecule add to a double or triple bond.
Hydrocarbons: Basic Concepts Topic 27 Addition reactions • As shown in the following generic example, a hydration reaction is the opposite of a dehydration reaction.
Hydrocarbons: Basic Concepts Topic 27 Addition reactions • A reaction that involves the addition of hydrogen to atoms in a double or triple bond is called a hydrogenation reaction. • This reaction is the reverse of one of the reactions you studied earlier in this section.
Hydrocarbons: Basic Concepts Topic 27 Addition reactions • One molecule of H2 reacts to fully hydrogenate each double bond in a molecule. • When H2 adds to the double bond of an alkene, the alkene is converted to an alkane.
Hydrocarbons: Basic Concepts Topic 27 Oxidation-reduction reactions • Many organic compounds can be converted to other compounds by oxidation and reduction reactions. • For example, suppose that you wish to convert methane, the main constituent of natural gas, to methanol, a common industrial solvent and raw material for making formaldehyde and methyl esters.
Hydrocarbons: Basic Concepts Topic 27 Oxidation-reduction reactions • The conversion of methane to methanol may be represented by the following equation, in which [O] represents oxygen from an agent such as copper(II) oxide, potassium dichromate, or sulfuric acid.
Hydrocarbons: Basic Concepts Topic 27 Oxidation-reduction reactions • What happens to methane in this reaction? • Before answering, it might be helpful to review the definitions of oxidation and reduction.
Hydrocarbons: Basic Concepts Topic 27 Oxidation-reduction reactions • Oxidation is the loss of electrons, and a substance is oxidized when it gains oxygen or loses hydrogen. • Reduction is the gain of electrons, and a substance is reduced when it loses oxygen or gains hydrogen.
Hydrocarbons: Basic Concepts Topic 27 Oxidation-reduction reactions • Thus, methane is oxidized as it gains oxygen and is converted to methanol. • Of course, every redox reaction involves both an oxidation and a reduction; however, organic redox reactions are described based on the change in the organic compound.
Hydrocarbons: Basic Concepts Topic 27 Oxidation-reduction reactions • Oxidizing the methanol produced in the previous reaction is the first step in the sequence of reactions described by the following equations. • For clarity, oxidizing agents are omitted.
Basic Assessment Questions Topic 27 Question 1 Write a balanced chemical equation for the following substitution reaction. Ethane reacts with bromine to form hydrogen bromide and an alkyl halide with one bromine atom.