220 likes | 323 Views
Analysis of Astrophysical Data Cubes using Cross-correlations and Wavelet Denoisings. A.Bijaoui 1 , D.Mékarnia 1 , J.P.Maillard 2 , C.Delle Luche 1 1 Observatoire de la Côte d'Azur (Nice) 2 Institut d’Astrophysique de Paris. Outlines. The A strophysical Data Cubes BEAR and IFTS
E N D
Analysis of Astrophysical Data Cubes using Cross-correlations and Wavelet Denoisings A.Bijaoui1, D.Mékarnia1, J.P.Maillard2, C.Delle Luche1 1 Observatoire de la Côte d'Azur (Nice) 2 Institut d’Astrophysique de Paris Granada iAstro Worshop
Outlines • The Astrophysical Data Cubes • BEAR and IFTS • The Karhunen-Loève expansion (KL/PCA) • The KL basis • The noise of the basis /components • Wavelet denoising of the basis/components • The residues and their denoising • An application on NGC 7027 cube • Conclusion Granada iAstro Worshop
The Integral-Field Spectrographs • Different optical devices • Scanning Fabry-Perot • Optical fibers (VIMOS, GIRAFFE) • Cylindrical lenses + Grating (TIGRE, OASIS) • Multislit (SAURON, MUSE) • Imaging Fourier Transform Spectrograph • Resulting Data Cubes • Size depending on the device • From Megapixel to Gigapixel • Need of specific analysis methods Granada iAstro Worshop
BEAR : an IFTS device Granada iAstro Worshop
BEAR at the CFHT focus Granada iAstro Worshop
The example of NGC 7027 • A post AGB planetary nebula • Observations Cox et al. 2002 • The resampled data cube: 128x128x1024 • What information? • Different spectral lines Abundance • Velocity field 3D view • Continuum • Necessity to denoise the data cube • To increase the SNR • To observe fainter objects Granada iAstro Worshop
The data cube Granada iAstro Worshop
Spectra sample Granada iAstro Worshop
Elements of the data reduction • We can take into account • The cross correlation between the images PCA / KL expansion • The significant details image / image • The significant details spectrum / spectrum • Different possible ways • Wavelet Transform + KL exp. + Denoising + Reconstruction (Starck et al. 2001) • KL exp. + Denoising + Reconstruction + Residue + Denoising (Mékarnia et al. 2003) Granada iAstro Worshop
KL and PCA • Search of uncorrelated images • The Principal Component Analysis • Iterative extraction of the linear combinations having the greatest variance • PCA application to images KL • The eigenvalue = the energy / order Granada iAstro Worshop
The noisy KL basis Granada iAstro Worshop
Denoising the KL expansion • Each KL component is noisy • Depends on the order / eigenvalue • Each KL spectrum is noisy • The reconstruction from noisy components leads to a noisy restoration • Each KL component / spectrum is denoised • Wavelet denoising • Redundant transform • Soft wavelet shrinkage Granada iAstro Worshop
The denoised KL basis Granada iAstro Worshop
The residues and their analysis • Do not forget to denoise the mean ! • The reconstruction with the denoised KL is limited: • Not enough components • Adding components = increase the noise • The denoising can remove local significant feature • Use of the residues between the original data and the restored one Granada iAstro Worshop
After the residue denoising Granada iAstro Worshop
Spectra Sample Granada iAstro Worshop
The velocity field Granada iAstro Worshop
3D visualisation Granada iAstro Worshop
A spectrum in a cavity Granada iAstro Worshop
A continuum image Granada iAstro Worshop
The integrated continuum Granada iAstro Worshop
CONCLUSION • Data cube can be denoised from KL • Limitation of the number of components • We could use more components with denoising • Too local information (spectral/spatial) • Residue denoising • Could be improved (best basis, softening rule, regularisation, ..) • Artifact removal • Use of ICA/SOBI blind source separation • Help for astrophysical interpretation Granada iAstro Worshop