100 likes | 334 Views
Quantum Control. Quantum compiling Algorithms as closed loop control circuits Correcting quantum errors with unitary operations. Shaped Ultrafast Optical Pumping of NMR Systems. Jason Taylor / Neil Gershenfeld MIT Media Lab Daniel Morris / Phil Bucksbaum University of Michigan.
E N D
Quantum Control • Quantum compiling • Algorithms as closed loop control circuits • Correcting quantum errors with unitary operations
Shaped Ultrafast Optical Pumping of NMRSystems Jason Taylor / Neil Gershenfeld MIT Media Lab Daniel Morris / Phil Bucksbaum University of Michigan
goals • Increase nuclear polarization • Unity polarization would be nice for quantum computers • Decrease nuclear polarization • Resetting qubits is necessary for quantum error correction • Selectively polarize nuclei
NMR & Biology • Tools for accessible NMR • Table-top NMR (whole systems, amplifiers) • Automatic shimming • Ultimate goal: • Biological structure via NMR • Imaging • Structure calculations • ??
Radio Frequency Graphical Models Implemented in Analog Circuits Benjamin Vigoda MIT Media Lab
Soft Gates for Coding pz(1) = px(1) py(1) pz(0) = px(0) py(0) pz(1) = px(0) py(1) + px(1) py(0) pz(0) = px(0) py(0) + px(1) py(1) For Binary Symmetric Channel with Hard Decision pz(x=1|y = 0) = p(x=0|y=1) = 1-A pz(x=1|y = 1) = p(x=0|y=0) = A
Translinear Multiplier SoftGate Source Referenced Subthreshold MOSFET: IDS = IO e KSVGS/t (1 – e -VDS/t ) For understanding circuit, think: IDS = IO e KVGS Circuit Computes: pz(1) = px(0) py(1) + px(1) py(0) pz(0) = px(0) py(0) + px(1) py(1)