1 / 62

Quantum control using diabatic and adibatic transitions

Quantum control using diabatic and adibatic transitions. Diego A. Wisniacki. University of Buenos Aires. Colaboradores-Referencias. Colaborators. Gustavo Murgida (UBA) Pablo Tamborenea (UBA). Short version ---> PRL 07, cond-mat/0703192 APS ICCMSE. Outline. Introduction

sana
Download Presentation

Quantum control using diabatic and adibatic transitions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quantum control using diabatic and adibatic transitions Diego A. Wisniacki University of Buenos Aires

  2. Colaboradores-Referencias Colaborators • Gustavo Murgida (UBA) • Pablo Tamborenea (UBA) • Short version ---> PRL 07, cond-mat/0703192 • APS ICCMSE

  3. Outline • Introduction • The system:quasi-one-dimensional quantum dot with 2 e inside • Landau- Zener transitions in our system • The method: traveling in the spectra • Results • Final Remarks

  4. Introduction

  5. Introduction

  6. Introduction Desired state

  7. Introduction Desired state

  8. Introduction • Main idea of our work

  9. Introduction • Main idea of our work To travel in the spectra of eigenenergies

  10. Introduction • Main idea of our work To travel in the spectra of eigenenergies

  11. Introduction • Main idea of our work To travel in the spectra of eigenenergies

  12. Introduction • Main idea of our work To travel in the spectra of eigenenergies

  13. Introduction • To navigate the spectra

  14. Introduction • To navigate the spectra

  15. Introduction • To navigate the spectra

  16. The system Quasi-one-dimensional quantum dot:

  17. The system Quasi-one-dimensional quantum dot: filled with 2 e Confining potential: doble quantum well

  18. The system Quasi-one-dimensional quantum dot: filled with 2 e Confining potential: doble quantum well

  19. The system Quasi-one-dimensional quantum dot: filled with 2 e Confining potential: doble quantum well

  20. Colaboradores-Referencias The system The Hamiltonian of the system: Time dependent electric field Coulombian interaction Note: no spin term-we assume total spin wavefunction: singlet

  21. The system Interaction induce chaos PRE 01 Fendrik, Sanchez,Tamborenea System: 1 well, 2 e Nearest neighbor spacing distribution

  22. Colaboradores-Referencias The system • We solve numerically the time independent Schroeringer eq. • Electric field is considered as a parameter • Characteristics of the spectrum (eigenfunctions and eigenvalues)

  23. The system Spectra

  24. The system Spectra • lines

  25. The system Spectra • lines • Avoided crossings

  26. Colaboradores-Referencias The system delocalized e¯ in the left dot e¯ in the right dot

  27. Landau-Zener transitions in our model LZ model

  28. Landau-Zener transitions in our model LZ model Linear functions

  29. Landau-Zener transitions in our model LZ model hyperbolas Linear functions

  30. Landau-Zener transitions in our model LZ model if Probability to remain in the state 1 Probability to jump to the state 2

  31. Landau-Zener transitions in our model LZ model Slow transitions Fast transitions

  32. Colaboradores-Referencias Landau-Zener transitions in our model We study the prob. transition in several ac. For example: LZ prediction Full system 2 level system E(t)

  33. The method: navigating the spectrum • Choose the initial state and the desired final state in the spectra

  34. The method: navigating the spectrum • Choose the initial state and the desired final state in the spectra • Find a path in the spectra

  35. The method: navigating the spectrum • Choose the initial state and the desired final state in the spectra • Find a path in the spectra • We use adiabatic and rapid transitions to travel in the spectra

  36. The method: navigating the spectrum • Choose the initial state and the desired final state in the spectra • Find a path in the spectra • We use adiabatic and rapid transitions to travel in the spectra • Avoid adiabatic transitions in very small avoided crossings • If it is posible try to make slow variations of the parameter

  37. Results • First example: localization of the e¯ in the left dot EPL 01 Tamborenea, Metiu (sudden switch method)

  38. Results • First example: localization of the e¯ in the left dot EPL 01 Tamborenea, Metiu

  39. Colaboradores-Referencias Results • Second example: complex path

  40. Colaboradores-Referencias Results • Second example: complex path

  41. Colaboradores-Referencias Results • Second example: complex path

  42. Colaboradores-Referencias Results • Second example: complex path

  43. Colaboradores-Referencias Results • Second example: complex path

  44. Colaboradores-Referencias Results • Second example: complex path

  45. Colaboradores-Referencias Results • Second example: complex path

  46. Colaboradores-Referencias Results • Second example: complex path

  47. Colaboradores-Referencias Results • Second example: complex path

  48. Colaboradores-Referencias Results • Second example: complex path

  49. Colaboradores-Referencias Results • Second example: complex path

  50. Colaboradores-Referencias Results • Third example:more complex path

More Related