620 likes | 748 Views
Quantum control using diabatic and adibatic transitions. Diego A. Wisniacki. University of Buenos Aires. Colaboradores-Referencias. Colaborators. Gustavo Murgida (UBA) Pablo Tamborenea (UBA). Short version ---> PRL 07, cond-mat/0703192 APS ICCMSE. Outline. Introduction
E N D
Quantum control using diabatic and adibatic transitions Diego A. Wisniacki University of Buenos Aires
Colaboradores-Referencias Colaborators • Gustavo Murgida (UBA) • Pablo Tamborenea (UBA) • Short version ---> PRL 07, cond-mat/0703192 • APS ICCMSE
Outline • Introduction • The system:quasi-one-dimensional quantum dot with 2 e inside • Landau- Zener transitions in our system • The method: traveling in the spectra • Results • Final Remarks
Introduction Desired state
Introduction Desired state
Introduction • Main idea of our work
Introduction • Main idea of our work To travel in the spectra of eigenenergies
Introduction • Main idea of our work To travel in the spectra of eigenenergies
Introduction • Main idea of our work To travel in the spectra of eigenenergies
Introduction • Main idea of our work To travel in the spectra of eigenenergies
Introduction • To navigate the spectra
Introduction • To navigate the spectra
Introduction • To navigate the spectra
The system Quasi-one-dimensional quantum dot:
The system Quasi-one-dimensional quantum dot: filled with 2 e Confining potential: doble quantum well
The system Quasi-one-dimensional quantum dot: filled with 2 e Confining potential: doble quantum well
The system Quasi-one-dimensional quantum dot: filled with 2 e Confining potential: doble quantum well
Colaboradores-Referencias The system The Hamiltonian of the system: Time dependent electric field Coulombian interaction Note: no spin term-we assume total spin wavefunction: singlet
The system Interaction induce chaos PRE 01 Fendrik, Sanchez,Tamborenea System: 1 well, 2 e Nearest neighbor spacing distribution
Colaboradores-Referencias The system • We solve numerically the time independent Schroeringer eq. • Electric field is considered as a parameter • Characteristics of the spectrum (eigenfunctions and eigenvalues)
The system Spectra
The system Spectra • lines
The system Spectra • lines • Avoided crossings
Colaboradores-Referencias The system delocalized e¯ in the left dot e¯ in the right dot
Landau-Zener transitions in our model LZ model Linear functions
Landau-Zener transitions in our model LZ model hyperbolas Linear functions
Landau-Zener transitions in our model LZ model if Probability to remain in the state 1 Probability to jump to the state 2
Landau-Zener transitions in our model LZ model Slow transitions Fast transitions
Colaboradores-Referencias Landau-Zener transitions in our model We study the prob. transition in several ac. For example: LZ prediction Full system 2 level system E(t)
The method: navigating the spectrum • Choose the initial state and the desired final state in the spectra
The method: navigating the spectrum • Choose the initial state and the desired final state in the spectra • Find a path in the spectra
The method: navigating the spectrum • Choose the initial state and the desired final state in the spectra • Find a path in the spectra • We use adiabatic and rapid transitions to travel in the spectra
The method: navigating the spectrum • Choose the initial state and the desired final state in the spectra • Find a path in the spectra • We use adiabatic and rapid transitions to travel in the spectra • Avoid adiabatic transitions in very small avoided crossings • If it is posible try to make slow variations of the parameter
Results • First example: localization of the e¯ in the left dot EPL 01 Tamborenea, Metiu (sudden switch method)
Results • First example: localization of the e¯ in the left dot EPL 01 Tamborenea, Metiu
Colaboradores-Referencias Results • Second example: complex path
Colaboradores-Referencias Results • Second example: complex path
Colaboradores-Referencias Results • Second example: complex path
Colaboradores-Referencias Results • Second example: complex path
Colaboradores-Referencias Results • Second example: complex path
Colaboradores-Referencias Results • Second example: complex path
Colaboradores-Referencias Results • Second example: complex path
Colaboradores-Referencias Results • Second example: complex path
Colaboradores-Referencias Results • Second example: complex path
Colaboradores-Referencias Results • Second example: complex path
Colaboradores-Referencias Results • Second example: complex path
Colaboradores-Referencias Results • Third example:more complex path