1 / 9

Self Organizing Map

Self Organizing Map. SOM. Jaringan Self- Organizing Map merupakan salah satu model jaringan saraf tiruan yang menggunakan metode pembelajaran tanpa supervisi (unsupervised learning) Salah satu keunggulan dari algoritma Self-

ajay
Download Presentation

Self Organizing Map

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Self Organizing Map

  2. SOM • Jaringan Self- Organizing Map merupakansalahsatu model jaringansaraftiruan yang menggunakanmetodepembelajarantanpasupervisi (unsupervised learning) • Salahsatukeunggulandarialgoritma Self- Organizing Map adalahmampuuntukmemetakandataberdimensitinggikedalambentukpetaberdimensirendah. • Prosespemetaanterjadiapabilasebuahpola berdimensibebasdiproyeksikandariruang masukankeposisipada array berdimensisatuatau dua

  3. Algoritma Diberikansuatu data set yang akandibuat SOM nya • Inisialisasisejumlah weight dengannilaiacak • Untuksetiapsample input xpada dataset, • cari weight yang paling mendekatidengan Euclidian distance, disebut BMU(Best Matching Unit) • update weight tsbdenganrumus • Lakukaniterasiuntukmeng-update weight sampaimencapainilaiiterasi yang telahditentukandanmengurangilajupembelajaran . Ulangidarilangkah 2

  4. A map of the world where countries have been colored with the color describing their poverty type (the color was obtained with the SOM in the previous figure):

  5. Matlab net = newsom(PR,[d1,d2,...],tfcn,dfcn,olr,osteps,tlr,tns) • PR - Rx2 matrix of min and max values for R input elements. • Di - Size of ith layer dimension, defaults = [5 8]. • TFCN - Topology function, default = 'hextop'. • DFCN - Distance function, default = 'linkdist'. • OLR - Ordering phase learning rate, default = 0.9. • OSTEPS - Ordering phase steps, default = 1000. • TLR - Tuning phase learning rate, default = 0.02; TND - Tuning phase neighborhood distance, default = 1.

  6. Akan digunakanpelatihan SOM dengan data gempa (datagempa.xls) • Dalammatlabgunakanfungsisom (newsom(parameter,)) • Lihat source code som.m

More Related