540 likes | 728 Views
A linear collider for the future Physics, Accelerator, detectors. Yannis Karyotakis. Physics Today. A very successful SM describes our particle word at low energy BUT open questions still unanswered: Electroweak symmetry breaking ( Higgs ??) Unification of the forces ( Supersymetrie ??)
E N D
A linear collider for the futurePhysics, Accelerator, detectors Yannis Karyotakis
Physics Today • A very successful SM describes our particle word at low energy • BUT open questions still unanswered: • Electroweak symmetry breaking ( Higgs ??) • Unification of the forces ( Supersymetrie ??) • Space time structure at short distances ( extra dims ?) • Dark matter and energy ( ??? ) Fundamental discoveries are expected with LHC, high precision measurements with LC to constrain our theory
New Physics < 1TeV + Unitarity is violated at perturbatif level Unitarity restored with a Higgs MH < 700 GeV New physics states E < 4pgMW~1TeV
The Higgs around the corner Summer ‘05 • Precision data (LEP,SLD,CDF,D0) favor a light SM Higgs MH > 114.4 GeV from direct searches
9 Le CERN découvre le Higgs Après 20 ans d’efforts, enfin au CERN, l’expérience LHCb met la main sur le Higgs, aussitôt confirmé par CMS. Lire en Page 2 l’interview du Pr B.Pietrzyk Indeed we all expect LHC to discover the Higgs BUT Is it really the Higgs ??? Must study its properties and compare with those from SM
Higgs production @ ILC For MH=120GeV @Ecm=500GeV and L=500fb-1 105 Higgs events !!
Is the mass generator ? • Couplings fermion and gauge boson masses • Measure Br’s • Rich phenomenology for MH < 2*MW Total width is measured bbgHbb / gHbb 2 % ccgHcc / gHcc 22.5 % +- gH / gH 5 % WW* gHww/ gHww 2 % ZZgHZZ/ gHZZ 6 % gg gHgg / gHgg 12.5 % gg gHgg/ gHgg 10 % mi = v ki
Higgs couplings @LHC Total width unknown
Higgs self coupling • Cross sections very low • Total s = 0.18fb or 92 events for L=500fb-1 @Ecm=500GeV and mh=120GeV • Only 0.1 fb useful to measure lhhh • s increases with Ecm 4 or 6 jets events, b enhanced : need to separate W/Z, b tagging
Scalar Higgs ? • If hgg J≠1 (LHC) • s versus Ecm • Angular distributions • q CP even/odd • q* reflects CP nature ee->Zh (Higgsstrahlung threshold)
SUSY • Possibility to unify forces and couplings • Offers a non baryonic dark matter candidate • A priori, some super partners are light < 1TeV • Hundreds of new parameters At a LC sparticles are produced through simple processes using eventually polarized electrons allowing measurements of masses quantum numbers and couplings
s masses scalars
ILC and Cosmology • Is SUSY LSP responsible for Cold Dark Matter ? • Need to study LSP properties, need precision measurements to compare with future experiments
Towards an ILC • We recommend that LC be based on super-conducting RF technology. • ... we are recommending a technology not a design. We expect that the final design be developed by a team drawn from the combined warm and cold linear collider communities...
ILC parameters • 1st stage • Energy 200→500 GeV, scannable • 500 fb-1in first 4 years • with option of x2 lum. in additional 2 years • Beam energy precision < 0.1% • Electron polarization > 80% • Two IRs • 2nd stage • Energy upgrade to ~1TeV • ~1000 fb-1 in 3-4 years • Options • g g, ge-, e-e-, Giga-Z ILC satisfies the feasibility criteria set by the International Technical Review Committee
2005 2006 2007 2008 2009 2010 CLIC Global Design Effort Project LHC Physics Baseline configuration Reference Design The GDE Plan and Schedule Technical Design ILC R&D Program Expression of Interest to Host International Mgmt
The Key Decisions Critical choices: luminosity parameters & gradient
Detector concepts for ILC GLD LDC SID
Momentum resolution • Higgs’ mass reconstruction
b tagging • Need to measure Higgs to c coupling • H cc only 10% of H bb • Huge background measurement, non b and 2 b jets
Forward coverage • Very important for low Dm SUSY particles • Cosmology favors low mass difference Veto needed down to 0.2 – 0.6 deg
Calorimetry Need for a highly dense and highly segmented calorimetry • A 100 Mpixel jet picture • Si and Tungsten
ECAL Pixels • Prototypes in hands of 16 mm2 • Designing for 12 mm2 or 1024 pixels per 6” wafer r-> p+po
Particle flow • Jet composition : • 64 % charged particles • 21% photons • 11% neutral hadrons • PFA : • Measure charged track momentum • Separate charged hits from neutral • Measure photons and neutral hadrons in the calorimeters • Perfect PFA 14%/sqrt(E) Assumed resolutions ECAL 11%/√E, HCAL 50%/√E +4%
Detector outline considerations Architecture arguments • Calorimeter (and tracker) Silicon is expensive, so limit area by limiting radius (and length) • Maintain BR2 by pushing B (~5T) • Excellent tracking resolution by using silicon strips • 5T field allows minimum VXD radius. • Do track finding by using 5 VXD space points to determine track – tracker measures sagitta. Exploit tracking capability of EMCAL for V’s. • Accept the notion that excellent energy flow calorimetry is required, use W-Si for EMCAL and the implications for the detector architecture… This is the monster assumption of SiD (MB quote)
Conclusions • Reaching the TeV scale is an appointment with new physics. • It is important we all together design the best accelerator and detectors to unveil the unknown. • The linear collider is the future for high energy physics and for the next generation, but it is prepared now.
Masses summary LHC+ILC complementary coverage over the sparticle spectrum
More on Couplings • SUSY, multi Higgs, extra dimensions different from SM couplings.
Higgs self coupling (2) ‘nnhh’ ‘hhZ’ Expected precision dl/l ~ 20% per channel for 1ab-1 P.Gay
Higgs and MSSM • Five Higgs • h0 light mh < 140 GeV • H0, A0, H typically masses up to 1TeV
R 1.27 m CAD overview ECAL overview • ( 20 layers x 2.5 mm thick • + 10 layers x 5 mm thick) Tungsten • ~ 1mm Si detector gaps • Preserve Tungsten RM eff= 12mm • Highly segmented Si pads 12 mm2
Cost Drivers Civil SCRF Linac
Vous avez dit Linéaire ?? • Usr énergie perdue par tour • LEP @ 100 GeV/ faisceau, 27Km 2GeV/tour • Extrapolation à 250 GeV/faisceau, r=150Km (r~E2) et Usr = 13 GeV/tour • Pour L ~ 10 34 cm-2 s-1 alors I ~ 2 A donc puissance RF = 26 GW
La luminosité* pour tous (1) • Luminosité ~ • Trains de nb paquets, faisceaux gaussiens fc : fréquence de collision par paquets Nb : nombre de particules / paquets A : recouvrement des faisceaux frep fréquence de répétition HD auto focalisation (>1) s dimensions des faisceaux Rappel : Section efficaces ~ 1/E2cm donc L ~ E2cm *collisionneurs e+e-
Nano faisceaux • Quadrupoles puissants au point d’interaction • Grande densité de charge • Forte auto-focalisation HD augmente • Beamstrahlung • Champ E ~GV/m !!!! Faisceau défléchi, émission de g • Dilution de la lumi pour Ecm • Création des paires e+e- bruit de fond • Sensibilité aux vibrations des éléments optiques et spécialement des FF quads
Vibrations • Mouvements du sol • Bruits culturels générés par l’activité de la machine • Eau de refroidissement • Pompes
Feed back par le faisceau • Déflection mutuelle et mesurable des faisceaux • qbb 150mrad • Mesure de l’angle (e+) par BPM • Correction des e- par dipôle et pour le paquet suivant Pour un quad qui oscille avec une fréquence f0 et un taux de répétition du faisceau frep, l’efficacité du feed back ~2pf0/frep frep limitera donc ce feed back