1 / 5

Example 1C: Applying the Perpendicular Bisector Theorem and Its Converse

Example 1C: Applying the Perpendicular Bisector Theorem and Its Converse. Find each measure. TU. TU = UV.  Bisector Thm. 3 x + 9 = 7 x – 17. Substitute the given values. 9 = 4 x – 17. Subtract 3x from both sides. 26 = 4 x. Add 17 to both sides. 6.5 = x.

alain
Download Presentation

Example 1C: Applying the Perpendicular Bisector Theorem and Its Converse

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Example 1C: Applying the Perpendicular Bisector Theorem and Its Converse Find each measure. TU TU = UV  Bisector Thm. 3x + 9 = 7x – 17 Substitute the given values. 9 = 4x – 17 Subtract 3x from both sides. 26 = 4x Add 17 to both sides. 6.5 = x Divide both sides by 4. So TU = 3(6.5) + 9 = 28.5.

  2. Since DG = EG and , is the perpendicular bisector of by the Converse of the Perpendicular Bisector Theorem. Check It Out! Example 1b Find the measure. Given that DE = 20.8, DG = 36.4, and EG =36.4, find EF. DE = 2EF Def. of seg. bisector. 20.8 = 2EF Substitute 20.8 for DE. 10.4 = EF Divide both sides by 2.

  3. Since, JM = LM, and , bisects JKL by the Converse of the Angle Bisector Theorem. Example 2C: Applying the Angle Bisector Theorem Find mMKL. mMKL = mJKM Def. of  bisector 3a + 20 = 2a + 26 Substitute the given values. a + 20 = 26 Subtract 2a from both sides. a= 6 Subtract 20 from both sides. So mMKL = [2(6) + 26]° = 38°

More Related