1 / 103

MOS Model 11

MOS Model 11. R. van Langevelde, A.J. Scholten and D.B.M. Klaassen Philips Research, The Netherlands MOS-AK Group Meeting’02 XFAB, Erfurt October 21, 2002. Introduction: MOS Model 11. Goals for MOS Model 11 (MM11):. suitable for digital, analog and RF

alain
Download Presentation

MOS Model 11

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MOS Model 11 R. van Langevelde, A.J. Scholten and D.B.M. Klaassen Philips Research, The Netherlands MOS-AK Group Meeting’02 XFAB, Erfurt October 21, 2002

  2. Introduction: MOS Model 11 Goals for MOS Model 11 (MM11): • suitable for digital, analog and RF • suitable for modern/future CMOS processes • physics based • simulation time comparable to MM9 • number of parameters comparable to MM9 • simple parameter extraction

  3. Introduction: MOS Model 11 Model developed for accurate distortion analysis in circuit design: • surface-potential-based model • accurate transition weak  strong inversion • symmetrical • distortion • accurate description of third-order derivatives (i.e. 3I/V3)

  4. Introduction: MOS Model 11 implemented physical effects: • mobility reduction • bias-dependent series resistance • velocity saturation • conductance effects (CLM, DIBL, etc.) • gate leakage current • gate-induced drain leakage • gate depletion • quantum-mechanical effects • bias-dependent overlap capacitances

  5. Introduction: availability of MM11 • public domain • source code in C (including solver) • documentation of model and parameter extraction • http://www.semiconductors.philips.com/Philips_Models • circuit simulators • Pstar (Philips in-house) • Spectre (Cadence) • Hspice (Avant!) • ADS (Agilent) • Eldo (Mentor Graphics) • HSIM (NASSDA)

  6. Introduction: structure of MOS Model 11 W, L Junction diodes modelled by JUNCAP-model Geometry Scaling T Temperature Scaling Model Equations

  7. MOS Model 11: outline • Introduction • DC-Model • AC-Model • Noise Model • Model Parameters & Extraction • Summary

  8. VSB= 0 V VDS = 1 V DC-Model: VT-based model VT-based model: 10 -3 interpolation needed between subthreshold and superthreshold (e.g. BSIM4 and MM9) 10 -4 10 -5 IDS (A) 10 -6 10 -7 10 -8 10 -9 Smoothing function 10 -10 0 1 2 VGS (V)

  9. DC-Model: surface-potential-based model s-based model: 10 -4 I = I + I drift diff DS single equation for whole operation range: 10 -5 I 10 -6 diff 10 -7 IDS (A) Idrift = f(VGB ,s0 ,sL) 10 -8 VSB = 0 V 10 -9 Idiff = g(VGB ,s0 ,sL) VDS = 1 V 10 -10 I drift 10 -11 0 1 2 IDS = Idrift + Idiff VGS (V)

  10. DC-Model: surface potentialys V = VSB at Source V = VDB at Drain Quasi-Fermi Potential V: V VGB EC EF Ei EV Gate Oxide Substrate

  11. time consuming approximation used: s = s(VGB ,V) (Solid-State Electron. 44, 2000) DC-Model: surface potential approximation iterative solution

  12. For real devices several physical effects have to be taken into account: • mobility effects • conductance effects new models Special attention to: • distortion • drain-source symmetry DC-Model: surface-potential-based model Description of ideal long-channel MOSFET

  13. DC-Model: distortion behavior IOUT 1 2 3 Amplitude 4 Harmonic VIN • 2nd-order distortion: cancels out in balanced circuit • 3rd-order distortion:limits dynamic range  accurate description of 3rd-order derivatives

  14. -5 10 HD1 -6 10 -7 10 HD2 Harmonic Amplitude (A) -8 10 V = 0 V -9 10 SB = 0.1 V V DS -10 10 HD3 V T -11 10 Mobility Reduction 1 2 3 4 Symbols Measurements and Lines MOS Model 11 V (V) Series-Resistance GS DC-Model: gate-bias induced distortion Gate-bias induced distortion for NMOS, W/L=10/1m

  15. -3 10 -4 10 -5 10 Harmonic Amplitude (A) 10 -6 10 -7 10 -8 0 1 2 3 4 Channel Length V (V) Modulation DS DC-Model: conductance modeling Drain-bias induced distortion for NMOS W/L=10/1m V = 0 V Static Feedback SB and V = 2.5 V GS Self-Heating HD1 HD2 HD3 Velocity Weak-Avalanche Saturation

  16. DC-Model: RF-distortion modeling RF-distortion determined by DC model f=16 MHz f=1 GHz NMOS, W/L=160/0.35mm, VDS=3.3 V, PIN=-5dBm

  17. Outline: DC-Model • VT vs. s-based models • Distortion modeling • Symmetry • Gate leakage current

  18. MOS models developed for VDS  0 for VDS< 0, source & drain are interchanged In order to preserve symmetry: IDS(VGS , VDS , VSB) = -IDS(VGD , VSD , VDB) Care has to be taken with the implementation of: • ideal current equation • velocity saturation • DIBL/static feedback • smoothing function (linear/saturation region) DC-Model : drain-source symmetry Symmetry w.r.t. source and drain at VDS= 0

  19. Not valid for threshold-voltage-based models MOS Model 9 MOS Model 9 DC-Model : drain-source symmetry IDS(VGS , VDS , VSB) = -IDS(VGD , VSD , VDB)

  20. Care has to be taken to preserve symmetry MOS Model 11 MOS Model 9 MOS Model 9 MOS Model 11 DC-Model : drain-source symmetry IDS(VGS , VDS , VSB) = -IDS(VGD , VSD , VDB)

  21. Outline: DC-Model • VT vs. s-based models • Distortion modeling • Symmetry • Gate leakage current

  22. VGS potential Gate Drain Source bulk DC-Model: gate leakage current

  23. VGS tox JG Gate { Drain Source bulk Simplified relation: where: DC-Model: gate leakage current NMOS, VDS=0V

  24. - EC EF Approximation (at VDS=0 V): Ei EV Gate Oxide Substrate parameters DC-Model: gate leakage model NMOS (in inversion): Gate current density: electron charge density tunnelling probability

  25. VGS>0 IG S D IGS IGD NMOS, tox=2 nm, Area=6 m2 DC-Model: gate current components

  26. VGS>0 IG IGOV IGS IGD S D NMOS, tox=2 nm, Area=6 m2 DC-Model: gate current components

  27. VGS<0 IG IGOV S D IGS IGD NMOS, tox=2 nm, Area=6 m2 DC-Model: gate current components

  28. VGS<<0 IG IGOV S D IGS IGD IGB NMOS, tox=2 nm, Area=6 m2 DC-Model: gate current components

  29. VGS<<0 IG IGOV S D IGS IGD IGB NMOS, tox=2 nm, Area=6 m2 DC-Model: gate current components

  30. determined by intrinsic region determined by overlap region DC-Model: gate leakage model NMOS, tox=2 nm, Area=6 m2

  31. MOS Model 11: outline • Introduction • DC-Model • AC-Model • Noise Model • Model Parameters & Extraction • Summary

  32. n+ + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - n+ n+ - - - p - - - AC-Model: intrinsic charges Intrinsic Capacitances: where i, j =G, S, D or B

  33. gate depletion effect quantum-mechanical effects tox=3.6nm tox=3.6nm tox=3.2nm AC-Model: input capacitance CGG charge model includes: accumulation physical tox=3.2nm PMOS, VDS=0 V, W/L=80*612/2.5mm

  34. AC-Model: symmetry and reciprocity of capacitances VDS=0V symmetry (CiD=CiS) reciprocity (Cij=Cji) CBD-CBS vs. VG CDS-CSD vs. VG

  35. introducing two parameters: kov and VFBov AC-Model: bias-dependent overlap capacitance Gate n+ n+ + + + + + + - - - - - - Source n+ p n+ Bulk Source/Drain Two-terminal MOS-capacitance: accumulation and depletion region included

  36. AC-Model: bias-dependent overlap capacitance PMOS , VDS=0 V , W/L=152*612/0.18mm Short-channel MOSFET, 0.18mm CMOS

  37. MOS Model 11: outline • Introduction • DC-Model • AC-Model • Noise Model • Model Parameters & Extraction • Summary

  38. induced gate noise 1/f noise thermal noise Noise Model: noise types in MOS transistor induced gate noise

  39. PMOS model 0 1 2 3 4 Vgs [Volt] Noise Model: 1/f-noise 10-8 NMOS 10-9 10-10 10-11 0 1 2 3 4 Vgs [Volt] • unified 1/f noise model: BSIM4, MM9 & MM11 • bias dependence verified • geometrical scaling verified (Kwok K. Hung et al., IEEE TED-37 (3), p.654, 1990; ibid. (5), p.1323, 1990)

  40. Old expression (BSIM,MM9) New expression (MM11) Noise Model: thermal noise • thermal noise: where: (F.M. Klaassen & J. Prins , Philips Res. Repts. 22, p.504, 1967)

  41. no hot electron effect needed to describe noise behaviour (A.J. Scholten et al., IEDM Tech. Dig., pp.155-158, 1999) Noise Model: thermal noise (II) 50 Noise Figure (NMOS, W/L=160/0.35mm, VDS=3.3V)

  42. Noise Model: thermal noise (III) 50 noise figure (no noise parameters needed)  verified on 0.35mm, 0.25mm and 0.18mm CMOS (A.J. Scholten et al., IEDM Tech. Dig., pp.155-158, 1999)

  43. MOS Model 11: outline • Introduction • DC-Model • AC-Model • Noise Model • Model Parameters & Extraction • Summary

  44. Parameters: model structure T WL Geometry Scaling Temperature Scaling Model Equations 37 geometry scaling parameters 13 temperature scaling parameters 39 miniset parameters

  45. ko 0.25 0.2 ko (V1/2) Scaling 0.15 Miniset 0.1 0 5 10 15 1/LE (1/m) Parameters: extraction strategy measurements extract miniset for each dut determine temperature scaling determine geometry scaling parameter set example: 0.12m CMOS

  46. Parameters: measurements required measurements per device 1 ID - VGS - curve for various VSB in linear region 2 ID- VDS - and gDS- VDS - curves for various VGS 3 IG- VGS - and IB- VGS - curves for various VDS 4 CGG - VGS - curve at VSB=VDS=0V (optional)

  47. Parameters: extraction outline • Measurements • Miniset extraction • Temperature scaling • Geometry scaling

  48. Parameters: DC miniset effect parameters threshold kO , B subthreshold slope mO flat-band voltage VFB poly depletion kP mobility reduction  , sr , ph , mob series resistance  , R velocity saturation sat conductance  , DIBL , sf , Th impact ionization a1 , a2 , a3 gate current IGINV, BINV, IGACC, BACC, IGOV

  49. Parameters: miniset extraction strategy extraction strategy: 1st-order estimation (optional) flat-band voltage/poly depletion somewhat different strategy for long-channel and short-channel devices (sub)threshold parameters mobility/series-resistance velocity saturation/conductance gate current start with long- channel device impact ionization

  50. doping concentration in polysilicon gate Parameters: miniset extraction of long-channel device Step 1: 1st-order estimation tox NP } 1st-order parameter estimate } { W miniset parameters L

More Related