170 likes | 294 Views
CMS HPS Project. Aim is to install precision forward proton tracking (~ 10 μ m; ~1 μ rad), and timing with resolution ~10 ps, at ±240 m ( ±420 m) on both sides of CMS for p p → p + X + p physics , at normal high luminosity low β * pp running. TOTEM (147 & 220m).
E N D
CMS HPS Project Aim is to install precision forward proton tracking (~ 10μm; ~1μrad), and timing with resolution ~10 ps, at ±240 m (±420 m)on both sides of CMS for p p → p + X + p physics, at normal high luminosity lowβ* pp running. TOTEM (147 & 220m) • High lumi running (*=0.5m) • 1033-1034cm-2s-1: • TOTEM 0.02 < < 0.2 • HPS420 0.002 < < 0.02 HPS420 (Stage2) HPS240 (Stage1)
Physics case • Unique access to a host of interesting QCD processes in the diffractive, • central-exclusive and photon-proton channels– p structure, low-x... • A glue-glue collider where the energy of the gluons is known • Central Exclusive Production: • Selection rules mean that central system is (to a good approx) 0++ • Tagging the protons means excellent mass resolution ~ GeV • Also ggcollider:rich program of gg physics • Light standard model Higgs can be seen with S/B O(1) - only with HPS420! • In certain regions of MSSM parameter space, S/B > 100, and double tagging may be the discovery channel • Explicit CP violation in the Higgs sector shows up as azimuthal asymmetry in • the tagged protons direct probe of CP structure of Higgs sector at LHC
Dove siamo con HPS • La situazione è in continua e fluida (ma positiva) evoluzione. • Il gruppo HPS sta producendo un documento (richiesto dal management) che andrà al management di CMS entro metà maggio. Questo documento conterrà la proposta di upgrade di CMS nella regione in avanti, con rivelatori di tracciamento per la misura di protoni di alto impulso e rivelatori di timing per la soppressione del pile-up, da posizionare in una ‘movable beampipe’ a ±240mdall’IP (Stage1). • Il documento include la prospettiva di un’installazione successiva a ±420m (Stage2), che necessita però di un cryo-bypass sulla linea di fascio. • Le attività di Torino in questo progetto riguardano: • il disegno e la prototipizzazione della ‘movable beampipe’ (Mimmo Dattola) • lo studio dei rivelatori di tracciamento a pixel 3D • il coordinamento della simulazione • management, coordinamento e editing del documento • In questo contesto va citato il recente sviluppo di una più stretta collaborazione tra CMS e TOTEM, che stanno esplorando la possibilità di lavorare insieme per un upgrade comune della regione in avanti e per il 2012 avranno periodi di presa dati insieme.
Movable beampipe Beam-pipe deformation without secondary vacuum Numerical simulations, analytical calculations and laboratory measurements done High quality prototype ready for testing HPS detector box
Studio di rivelatori al silicio “3D” Come possibile upgrade di CMS è in studio un rivelatore da installare a 240 m / 420 m dal punto di interazione per misurare protoni di altissima energia che vengono diffusi a piccolissimo angolo all’interno della beampipe di LHC (progetto HPS). Nell’ambito di questo progetto, siamo interessati a studiare nuovi rivelatori di tracciamento, i rivelatori al silicio detti 3D • Vantaggi dei sensori 3D vs planari: • stessa raccolta di carica di un planare a parità di spessore • tensione di svuotamento più bassa (~ 10 V) • tempo di raccolta della carica più rapido • maggiore resistenza alle radiazioni • efficienti fino al bordo
HPS-3D activity done in Torino – 2011/2012 • 2011 • 2 ATLAS08 FBK wafers bump-bonded at Selex to the CMS pixel ROC PSI46: • 28 detectors (16 1E; 6 2E; 6 4E) • 14 detectors wire-bonded and characterised in Torino, 14 at FNAL/Purdue • Tested at FNAL in March and October with a 120 GeV proton beam • Few of them irradiated at LANL with 800 MeV protons up tofluences of • 5e15 p/cm2 and tested again with beam in October and April 2012 • 2012 • 1 ATLAS09 FBK wafer bump-bonded at Selex: 3 detectors 1E • Wire-bonded and characterised in Torino • Tested at FNAL in April with a 120 GeV proton beam • Characterisation in the lab: I-V curves, noise vs bias • Testbeam analysis ongoing: resolution and efficiency • - vs threshold, bias, angle (charge sharing) • - vs electrode configuration • - before/after irradiation
Attività HPS-3D Torino – 2013 • Caratterizzazione in laboratorio di nuovi rivelatori • Nuova produzione prevista ad FBK in autunno, prima della chiusura per alcuni mesi • per lavori sulla linea di produzione. Il layout già disegnato (G-F. Dalla Betta, Univ. • di Trento) contiene sensori 3D-DDTC ‘slim edge’ con diverse configurazioni di • elettrodi, tra cui una nuova configurazione 3E mai provata per sensori CMS • Test su fascio • Test dei nuovi rivelatori e dei rivelatori già testati in Ott-2011 e Apr-2012 a FNAL • con un fascio di protoni da 120 GeV/c ed attualmente in fase di irraggiamento. • Poichè la linea di fascio di FNAL è chiusa fino all’estate 2013, il gruppo CMS di • FNAL col quale collaboriamo sta cercando dove fare i prossimi testbeam • Analisi dei dati dei testbeam • È in corso e proseguirà nel 2013 l’analisi dei dati per studiare • risoluzione ed efficienza dei rivelatori 3D • - vs threshold, bias, angle (charge sharing) • - vs electrode configuration • - before/after irradiation
Examples of I-V curves (ATLAS08 wafers) Leakage current [A] Leakage current [A] W2 VBias [V] VBias [V] Noise vs Bias 1E 2E Noise increases with the number of electrodes
I-V curves (ATLAS09 wafer) Leakage current [A] VBias [V] Noise vs Bias 1E 2E
Testbeam analysis – work in progress CNM 1E detector (4 CNM 3D detectors also tested at FNAL) MPV ≈ 15k e- FBK irradiated 1E detector X Residuals Cluster Size 2 σ = 23.26 μm Y Residuals Cluster Size 2 σ = 30.01 μm
3D: work in progress in Torino Torino started working on 3Ds at the beginning of 2010 (M. Obertino, A. Solano) Climate chamber IV-Curve set-up HV Sensor PSI test bord USB- for PC Aim: 3D study for HPS – 240 (420m) LV
3D: work in progress in Torino • • Bump-bonding : contract with Selex • PSI46 chips ready for the flip-chip • contract for the Indium deposition on a few sensor wafers • • Wire-bonding done in Torino
FBK ATLAS07 Wafer thickness: 200mm Slim edge (200 mm on two sides) Preproduction: * Bowing problem * Expected high leakage current and low breakdown 1E 1E 1E 1E CMS pixel detectors 6 sensors bump-bonded at IZM in April 2011, characterised at FNAL/PURDUE 3 sensors tested with 120 GeV p at FNAL in October and later irradiated at LANL
FBK ATLAS08 • Wafer thickness: 200 mm • No active edge, no slim edge • Different electrode configuration available (1E,2E,4E) • 28 bump-bonded at Selex • 14 sensors delivered in February • tested in lab in Torino/Purdue/FNAL • 9 sensors tested with 120 GeV p at FNAL in March • few of them irradiated with 800 MeV proton at LANL (up to 5E15 p/cm2) • 14 sensors delivered in May tested in lab in Torino(7)/Purdue(7) • 8 sensors tested with 120 GeV p at FNAL in Oct. • few of them irradiated with • 800 MeV proton at LANL • (up to 5E15 p/cm2) CMS pixel detectors 1E 1E 2E 1E 2E 2E 1E 4E 1E 4E 1E 4E 1E 1E
FBK ATLAS09 (QUALIFICATION BATCH) Different wafer thicknesses: 200-230-250 mm Slim edge (200 mm on two sides) Expected lower leakage current and higher breakdown • 3 sensors bump-bonded at Selex, tested in lab in Torino • 2 tested with 120 GeV p at FNAL in March 1E 1E 1E 1E CMS pixel detectors Lots of wafers available at IZM, which recently became available following a general agreement with ATLAS about the use of CMS sensors
FNAL TEST BEAMS • 4 test beams performed so far at the MTEST facility at Fermilab: • November 2010 Sintef sensors (5 2E and 2 4E) • March 2011 9 FBKs (4 1E, 3 2E and 2 4E) • October 2011 8 new FBKs (4 1E, 2 2E, 2 4E) + 5 irradiated FBKs + 3 FBKs from ATLAS07 + 4 CNMs • April 2012 3 new FBKs (1E) + 7 irradiated FBKs + 2 irradiated CNMs • Pixel telescope with 8 silicon planes (4 upstream and 4 downstream) • used to reconstruct tracks • 2 Detectors Under Test (DUTs) tested at the same time • Rotaty stage + Cooling box for irradiated detectors CAPTAN (DAQ SYSTEM) TELESCOPE BOX BEAM 120 GeV p No B field DUT SENSOR BIAS SCINTILLATOR (TRIGGER)