150 likes | 182 Views
Algebra Revision. Algebra. We are going to look at : Substitution Simplifying By adding By multiplying Expanding Brackets. Substitution. a = 1 b = 3 c = 5 a + b 3a + 2b 4a – c c 2 3b 2. Substitution. a = 1 b = 3 c = 5 a + b 4 3a + 2b 9 4a – c -1 c 2 25
E N D
Algebra We are going to look at : • Substitution • Simplifying • By adding • By multiplying • Expanding Brackets
Substitution a = 1 b = 3 c = 5 • a + b • 3a + 2b • 4a – c • c2 • 3b2
Substitution a = 1 b = 3 c = 5 • a + b 4 • 3a + 2b 9 • 4a – c -1 • c2 25 • 3b2 27
Simplifying – by adding • a + a • 2a + 7a • 3a + b + 7a • 5a + 2b + a + 2b • 3a + 6 – a + 10
Simplifying – by adding • a + a 2a • 2a + 7a 9a • 3a + b + 7a 10a + b • 5a + 2b + a + 2b 6a + 4b • 3a + 6 – a + 10 2a + 16
Simplifying – by multiplying • a x a • a x a2 • 2a x 5a • 4a2 x 7a3 • 3ab x a
Simplifying – by multiplying • a x a a2 • a x a2 a3 • 2a x 5a 10a2 • 4a2 x 7a3 28a5 • 3ab x a 3a2b
Expanding brackets • 3(x + 2) • 4(x + 3) • 6(2x + 7) • x(x + 4)
Expanding brackets • 3(x + 2) 3x + 6 • 4(x + 3) 4x + 12 • 6(2x + 7) 12x + 42 • x(x + 4) x2 + 4x
Expanding double brackets • (x + 2)(x + 3) • (x + 4 )(x + 7) • (x + 5)(x + 8)
Expanding double brackets • (x + 2)(x + 3) x2 + 5x + 6 • (x + 4 )(x + 7) x2 + 11x + 28 • (x + 5)(x + 8) x2 + 13x + 40