260 likes | 393 Views
Deep-sea neutrino telescopes. Prof. dr. Maarten de Jong Nikhef / Leiden University. contents. Neutrino astronomy Antares prototype KM3NeT next generation neutrino telescope issues, ideas. Neutrino astronomy. p. n. g. neutrinos. Why neutrinos? no absorption no bending.
E N D
Deep-sea neutrino telescopes Prof. dr. Maarten de Jong Nikhef / Leiden University
contents • Neutrino astronomy • Antares • prototype • KM3NeT • next generation neutrino telescope • issues, ideas
Neutrino astronomy p n g neutrinos • Why neutrinos? • no absorption • no bending • Scientific motivation: • origin cosmic rays • creation& composition relativistic jets • mechanism cosmic particle acceleration • composition dark matter neutrino telescope
1960 Markov’s idea: Use sea water as target/detector • range of muon • detect Cherenkov light • transparency of water
How? wavefront neutrino muon 1 2 3 4 5 ~100 m interaction ~few km muon travels with speed of light (300,000 km/s) →ns (10 cm) @ km
General layout light detection real-time event distribution 3-5 km 800 m 1-2 km >1000 km 50-100 km shore station transmission of (all) data data filter
Antares prototype neutrino telescope • ‒ 100 persons • ‒ 25 M€ • 1997‒2005 • R&D • site explorations • measurements of water properties • 2005‒2008 • construction-operation • 2008‒2017 • operation
Antares 12 lines ~2.5 km 500 m 250 Atm. ~200x200 m2 25 storeys / line
Detection unit Optical beacon timing calibration 10” PMT photon detection Electronics readout titanium frame mechanical support Hydrophone acoustic positioning ~1 m
Dutch industry Gb/s transceiver passive cooling DC–DC converter
deep-sea network connector (3) penetrator (2) container CPU FPGA e/o PMT 100 Mb/s optical fiber (21) 5x15 m penetrator (3) container Ethernet switch 1 Gb/s e/o e/o 5‒25x15 m junction box container DWDM filter optical fiber (4) (40) 1 km 40 km wet-matable connector (2)
data flow CPU CPU CPU CPU CPU CPU time off-shore on shore Ethernet switch data filter data filter data filter
data flow CPU CPU CPU CPU CPU CPU time off-shore on shore Ethernet switch data filter data filter data filter
data flow CPU CPU CPU CPU CPU CPU time off-shore on shore Ethernet switch data filter data filter data filter
Antares • deep-sea infrastructure • 1 km3 • 900 PMTs, hydrophones, ADCP, seismometers, etc. • 10 kW, 1 GB/s • one main electro-optical cable • 50 km, AC, 1 cupper conductor + sea return • network • active multiplexing locally (Ethernet standard) • passive multiplexing based on DWDM technology • low number of channels for reliability of offshore transceiver (l stability) • operation • 10 years (some maintenance’ • data transmission signal recovery by amplification
KM3NeT • 2005‒2008 • design study • 2008‒2012 • preparatory phase • 2013‒2017 • construction definitive neutrino telescope • ‒ 300 persons • ‒ 200 M€
Optical module (camera) 31 x 3” PMT Electronics inside
deep-sea network optical modulator lj+1 • integrate timing system (GHz = ns) • minimise offshore electronics penetrator (1) receiver lj receiver laser wet-matable connector (1) DWDM laser shore station DWDM
Storey Frame Mechanical cable storage Data cable storage Mechanical cable connection 6 m Optical module Mechanical holder 1 Digital Optical Module = Dom 2 Dom’s on 1 bar = Dom-bar 20 Dom-bar’s on 1 tower = Dom tower Needs new deployment technique
Earth & Sea sciences short lived (rare) events dominate deep-sea life permanent observatory France Temperature Bioluminescence sudden Eddie currents food supply time profile observatory
KM3NeT • deep-sea infrastructure • 10 km3 • >100,000 PMTs, hydrophones, ACDP, seismometers, etc. • <100 kW, 100 GB/s • two main electro-optical cables • 100 km, DC, 1 cupper conductor + sea return • network • PON, point-to-point + amplification • new Ethernet standard • Precision-Time-Protocol (”White Rabbit”) • operation • 10 years without maintenance
Deep-sea infrastructure • materials • containers (glass, Ti, Al) • mechanics • drag, deployment, etc. • cables • dry versus oil-filled • little experience with vertical orientation • wet-matable connectors • expensive (combined fiber and cupper wires) • bulky (problems with handling) • penetrators • source of single-point-failures (error propagation)
data taking & processing • network • high-bandwidth & long haul • integration of data transmission & timing (PTP) • (real-time) data distribution • monitoring • archival • offline analysis (astronomy, etc.) • external triggers • satellites, other infrastructures • computing • (real-time) data processing • algorithms (reduction of complexity & parallelization of problem) • implementation (state-of-the-art OO-programming) • hardware (multi-core, GPUs)
Fiber technology • data transmission • laser/[A]PD • flexible (2 x transceiver = point-to-point link) • active feedback loop (intrinsically instable power, l) • non-negligible electrical power consumption • modulators • wavelength, phase, intensity, polarization • very low power • reliable • amplification • long-haul communication • Energy transmission • ? • sensor • e.g. Bragg reflectrometer as deep-sea hydrophones • sensitivity • low weight…