1 / 70

Approches formelles en syntaxe et sémantique

Approches formelles en syntaxe et sémantique. Alain Lecomte UMR 7023 Structures Formelles de la Langue. programme minimaliste. Deux opérations générales: merge move . definition. A minimalist grammar is a 4-tuple (V, Cat, Lex, F) where: V = P  I

alden
Download Presentation

Approches formelles en syntaxe et sémantique

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Approches formelles en syntaxe et sémantique Alain Lecomte UMR 7023 Structures Formelles de la Langue

  2. programme minimaliste • Deux opérations générales: • merge • move

  3. definition • A minimalist grammar is a 4-tuple (V, Cat, Lex, F) where: • V = P  I • Cat = (base  select  licensee  licensor), • Lex = cf. above • F = {merge, move} • ex: P = {/marie/, /pierre/, /le/,/quechua/,…} I = {(marie), (pierre), (quechua), (le),…} • base = {c, t, v, d, n, …} • select = { =x ; xbase} • licensee = { -k, -wh, …} • licensor = {+k, +K, +wh, +WH, …}

  4. merge • A pair of trees ,  belongs to the domain of merge iff  has the feature =x and  has the feature x for some xbase. • merge(, ) = [< ’, ’ ] if  has only one node • merge(, ) = [> ’, ’ ] if  has more than one node • ’ :  - {=x} and ’ :  - {x} •  « has the feature f » : the first element of the sequence which labels  ‘s head is f

  5. projections, heads… • When two constituants are merged, one of them « projects over » the other, we write: x < y for « x projects over y » • x is head of y if: • y leaf and x = y • or : x is head of some z which projects over all its sisters

  6. move •  belongs to the domain of move iff  has the feature +y and  has exactly one maximal subtree 0 which has the feature –y • move() = [> ’0 , ’] • where ’0 is 0 – {-y} and ’is  - {+y} and ’0 is replaced by a featureless node if y is strong and with only the phonetic features if it is weak. • maximal : his root is the maximal projection of some head

  7. Example (Stabler 97) Lexicon: d –k maria d –k quechua =n d –k some =n d –k every n student n language =d +k =d v speaks =c +k =d v believes =v +K t =t c =t c -k

  8. Merge =n d –k every n language

  9. < d –k every language

  10. < =d +k =d v speaks d –k every language

  11. < < +k =d v speaks –k every language

  12. < –k every language Move < +k =d v speaks

  13. < –k every language Move < < +k =d v speaks –k every language

  14. > < every language Move < l =d v speaks

  15. > < (every) (language) < =d v speaks /every//language/ LF : (some linguist)(every language)(speaks) PF: /some linguist speaks every language/

  16. merge • {Peter} {smoke} (sans tenir compte du temps) n /peter/ =n v /smoke/

  17. merge • {Peter} {smoke} /peter/ v /smoke/

  18. merge • {Peter} {smoke} • Type driven interpretation t /peter/ e v /smoke/ e  t

  19. merge • {Peter} {smoke} (without tense) • Type driven interpretation t smoke(p*) /peter/ e v /smoke/ e  t x. smoke(x) p*

  20. Merge principle • Two expressions can merge only if their semantical types allow it : • If  and  are expressions, if  has the type of a function the domain of which contains , then they can merge and the resulting expression  is such that: [[]] = [[]]([[]]) (with the resulting type)

  21. move • personne que Pierre admire N N CP personne que C’ C IP Pierre admire t

  22. move • personne que Pierre admire : • x. [personne(x)admire(pierre, x)] • Hypothesis (Heim & Kratzer): • every trace translates into an e-type variable (if an NP is moved) • Pierre admire t : • admire(pierre, xn)

  23. move • personne que Pierre admire N N CP P.x. [P(x)admire(pierre, x)] personne que C’ C IP admire(pierre, x) Pierre admire t

  24. move • personne que Pierre admire N N CP P.x. [P(x)admire(pierre, x)] personne que C’ U. P.x. [P(x)U(x)] C IP admire(pierre, x) Pierre admire t

  25. move • personne que Pierre admire N N CP P.x. [P(x)admire(pierre, x)] personne ? que C’ U. P.x. [P(x)U(x)] C IP admire(pierre, x) Pierre admire t

  26. types N <e, t> N CP P.x. [P(x)admire(pierre, x)] personne t que C’ U. P.x. [P(x)U(x)] <<e, t>, <<e, t>, <e, t>>> C IP admire(pierre, x) Pierre admire t

  27. types N <e, t> N CP P.x. [P(x)admire(pierre, x)] personne mismatch t que C’ U. P.x. [P(x)U(x)] <<e, t>, <<e, t>, <e, t>>> C IP admire(pierre, x) Pierre admire t

  28. N <e, t> N CP P.x. [P(x)admire(pierre, x)] personne que U. P.x. [P(x)U(x)] <<e, t>, <<e, t>, <e, t>>> types <e, t> Abstraction step t C’ C IP admire(pierre, x) Pierre admire t

  29. N <e, t> N CP P.x. [P(x)admire(pierre, x)] personne que U. P.x. [P(x)U(x)] <<e, t>, <<e, t>, <e, t>>> types <e, t> x. admire(pierre, x) t C’ C IP admire(pierre, x) Pierre admire t

  30. Move principle • Let [+f] a tree which has the feature +f, and which contains only one maximal subtree [-f]*, therefore of semantics [[(x)]], where x is a variable representing . Let  the tree obtained by moving  out of , then: • [[]] = [[]](x. [[(x)]][x/x]), if there is no further expected move of . • If there are expected moves of  (other licensees –f in it), • [[]] = (x. [[(x)]][x/x])(y) where y is a fresh variable

  31. example • Quel bus tu prends? • Lexicon: • bus : n /bus/ x.bus(x) • quel : =n d –wh /quel/ P.Q.[quel x P(x)Q(x)] • tu : d /tu/ tu • prends : =d =d v /prends/ x.y.monte-dans(y, x) • =v t • =t +WH c

  32. n /bus/ x.bus(x) • =n d –wh /quel/ P.Q.[quel x P(x)Q(x)]

  33. < /bus/ x.bus(x) • d –wh /quel/ P.Q.[quel x P(x)Q(x)] merge

  34. Q.[quel x bus(x)Q(x)] < /bus/ • d –wh /quel/ merge

  35. d -wh /quel//bus/ xbus, =d =d v /prends/ x.y.monte-dans(y, x) merge

  36. y.monte-dans(y, xbus) < -wh /quel//bus/ =d v /prends/ merge

  37. > y.monte-dans(y, xbus) < • d /tu/ tu -wh /quel//bus/ =d v /prends/ merge

  38. monte-dans(tu, xbus) > < • /tu/ -wh /quel//bus/ v /prends/ merge

  39. monte-dans(tu, xbus) < =v t > < • /tu/ -wh /quel//bus/ v /prends/ merge

  40. monte-dans(tu, xbus) < > t < • /tu/ -wh /quel//bus/ /prends/ merge

  41. monte-dans(tu, xbus) < < =t +WH c > t < • /tu/ -wh /quel//bus/ /prends/ merge

  42. monte-dans(tu, xbus) < < +WH c > < • /tu/ -wh /quel//bus/ /prends/ merge

  43. > monte-dans(tu, xbus) < -wh /quel//bus/ < +WH c > < • /tu/ /prends/  move

  44. > monte-dans(tu, xbus) < /quel//bus/ < c > < • /tu/ /prends/  move

  45. > /quel//bus/ u. monte-dans(tu, u) • Q.[quel x bus(x)Q(x)] < < c > < • /tu/ /prends/  move

  46. > /quel//bus/ • [quel x bus(x) monte-dans(tu, x)] < < c > < • /tu/ /prends/  move

  47. conclusion • Syntax and semantic cooperate : • merge and move drive semantical operations (application and abstraction) • semantical typing selects the correct derivations (« objects » go to accusatives, « subjects » to nominatives) • Similarities with type-logical grammars : • resource consumption logic • Curry-Howard homomorphism

  48. Passive voice • seen :: =d v <e, t> x. seen(x) • was :: =v +NOM infl <t, t> • Paul :: d –k(<<e, t>, t>  e) • Mary :: d -k • by :: =d +obl V= v <e, <<e, t>, <e, t>>> z.u.y.agent(u(y), z)

  49. seen :: =d v <e, t>x. seen(x) • was :: =v +NOM infl <t, t> • Paul :: d –k(<<e, t>, t>  e) • Mary :: d -k • by :: =d +obl V= V <e, <<e, t>, <e, t>>> z.u.y.agent(u(y), z) =d v <e, t> d –k e /seen/

  50. seen :: =d v <e, t>x. seen(x) • was :: =v +NOM infl <t, t> • Paul :: d –k(<<e, t>, t>  t) • Mary :: d -k • by :: =d +obl V= V <e, <<e, t>, <e, t>>> z.u.y.agent(u(y), z) seen(x) v <e, t> –k e /seen/

More Related