1 / 60

Kapitel 12 Übertragung, Verarbeitung und Speicherung von Daten

Kapitel 12 Übertragung, Verarbeitung und Speicherung von Daten. 12.1 Der Kondensator. Der einfachste Aufbau eines Kondensators besteht aus 2 gegenüberliegenden Metallplatten, die durch Luft getrennt sind. Versuch 1: Kondensator als Energiespeicher.

alden
Download Presentation

Kapitel 12 Übertragung, Verarbeitung und Speicherung von Daten

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kapitel 12Übertragung, Verarbeitung und Speicherung von Daten Kap.12 Übertragung und Verarbeitung von Daten

  2. 12.1 Der Kondensator Der einfachste Aufbau eines Kondensators besteht aus 2 gegenüberliegenden Metallplatten, die durch Luft getrennt sind. Versuch 1: Kondensator als Energiespeicher Baue die Schaltung auf. Als Schalter soll ein Wechselschalter verwendet werden. Was passiert beim Laden? ........................... Linke Lampe leuchtet kurz auf. Was passiert beim Entladen? ....................... Rechte Lampe leuchtet kurz auf. Ein Kondensator kann elektrische Ladung und Energie speichern. Kap.12 Übertragung und Verarbeitung von Daten

  3. Kap.12 Übertragung und Verarbeitung von Daten

  4. Kap.12 Übertragung und Verarbeitung von Daten

  5. Kap.12 Übertragung und Verarbeitung von Daten

  6. Kap.12 Übertragung und Verarbeitung von Daten

  7. Wie viel ein Kondensator speichern kann wird durch seine Kapazität angegeben. Die Kapazität wird in Farad gemessen. Ein Farad ist eine sehr große Einheit. Daher verwendet man: µF, nF, pF, .. Tantalkondensator Bauarten: Elektrolytkondesatoren Kap.12 Übertragung und Verarbeitung von Daten

  8. Drehkondensator Kap.12 Übertragung und Verarbeitung von Daten

  9. Anwendungen: In Blitzgeräten, Zum Glätten von Spannungschwankungen (z. B. bei pulsierendem Gleichstrom). In elektromagnetischen Schwingkreisen. Kap.12 Übertragung und Verarbeitung von Daten

  10. 12.2 Halbleiter Zu den Halbleitern zählen Silizium, Germanium, Selen, … Si und Ge haben 4 Außen-elektronen. (4. Hauptgruppe im Periodensystem) Bereits bei Zimmertemperatur können sich infolge der Wärme-bewegung Elektronen aus der Bindung loslösen und sich im Kristallgitter frei bewegen. Neben diesen Elektronen entstehen an den Stellen, wo sich die Elektronen befanden, Löcher (positive Ladung). Auch diese Löcher tragen zur Leitung bei. Kap.12 Übertragung und Verarbeitung von Daten

  11. Die Löcher werden durch Elektronen von Nachbaratomen aufgefüllt Dadurch wandert das Loch weiter. (vgl. Bild Parkbank) Kap.12 Übertragung und Verarbeitung von Daten

  12. Die Halbleitereigenschaft kann zur Temperatur- und Lichtmessung verwendet werden. Die Leitfähigkeit von Halbleitern durch Temperaturänderung ist begrenzt. Die große Bedeutung der Halbleiter besteht darin, dass man sie durch gezieltes Verunreinigen mit Fremdatomen, in ihren Eigenschaften beeinflussen kann. Kap.12 Übertragung und Verarbeitung von Daten

  13. Dotierung von Halbleitern: n-Leiter (Donator) Einbau von 5-wertigen Atomen (z.B. As) Das freie Elektron steht für die Elektrizitätsleitung zur Verfügung. Buch Seite 32 Abb. 22.2 Stromleitung erfolgt durch negative Ladungen. Kap.12 Übertragung und Verarbeitung von Daten

  14. p-Leiter (Akzeptor) Einbau von 3-wertigen Atomen (z.B. In) Ein „Loch“ verhält sich wie eine positive Ladung. Es kann ein Elektron eines Nachbaratoms einfangen und damit wandert das Loch (+ Ladung) weiter. Buch Seite 32 Abb. 22.3 Stromleitung erfolgt durch positive Löcher. Kap.12 Übertragung und Verarbeitung von Daten

  15. 12.2.1 Die Diode: Schaltsymbol: Buch Seite 33 Abb. 23.1 – 23.4 Zwei verschieden (+,-) dotierte Halbleiter werden aneinandergesetzt. Es entsteht an der Stelle des Aneinan-derstoßens eine Grenzschicht. Verhalten an der Grenzschicht: Durch die Wärmebewegung der Teilchen treten Elektronen (e) vom N-Leiter in den P-Leiter und füllen dort die Löcher. Daher bildet sich in der Grenzschicht eine schmale Zone, in der fast keine beweglichen Ladungen mehr sind. Kap.12 Übertragung und Verarbeitung von Daten

  16. Wir legen eine Spannung an die Diode: – an P-Leiter + an N-Leiter: Sperrschicht verbreitert sich. (Absaugen weiterer frei bewegl. Ladungsträger). Diode in Sperrrichtung gepolt: + an P-Leiter – an N-Leiter: Es werden ausreichend Elektronen nachgeliefert, die Sperrschichtbreite nimmt ab. Diode in Durchlassrichtung gepolt: Kap.12 Übertragung und Verarbeitung von Daten

  17. Wirkungsweise der Diode Versuchsaufbau: In den Parallelzweigen befinden sich zwei Lämpchen und eine Siliziumdiode. (Beachte die umgekehrte Polung der Dioden!) Versuch 1: Schließe die Anordnung an eine Gleichspannungsquelle. Kennzeichne, welcher Zweig in Durchlassrichtung zeigt. Versuch 2: Schließe die Anordnung an einen Funktionsgenerator! Beschreibe was passiert! Kap.12 Übertragung und Verarbeitung von Daten

  18. Die Diode wirkt wie ein Ventil. Sie lässt den Strom nur in eine Richtung durch. Anwendung der Diode: 1. Einweggleichrichtung 2. Zweiweggleichrichtung Kap.12 Übertragung und Verarbeitung von Daten

  19. Grätzsche Brückenschaltung Kap.12 Übertragung und Verarbeitung von Daten

  20. Stromfluss Grätz Kap.12 Übertragung und Verarbeitung von Daten

  21. Zweiweggleichrichtung – + Kap.12 Übertragung und Verarbeitung von Daten

  22. Glättung Kap.12 Übertragung und Verarbeitung von Daten

  23. Schaltsymbole: 12.2.2 Der Transistor: Bringt man hintereinander die Störstellenschichten npn oder pnp auf, so erhält man einen Flächentransistor. Der Transistor besteht aus zwei Dioden, die einander entgegengesetzt gepolt sind. Legt man nun zwischen Emit-ter und Kollektor eine Span-nung an, so sperrt der Tran-sistor auf einer Diode immer. Kap.12 Übertragung und Verarbeitung von Daten

  24. Die Wirkungsweise eines Transistors beruht nun darauf, dass man eine Hilfsspannung zwischen Emitter und Basis anlegt. Dadurch werden Elektronen aus dem Emitter in die Basis getrieben. Ein geringer Teil von ihnen rekombiniert mit den Löchern der Basis, der größte Teil gelangt aber durch die dünne Basisschicht durch und durchdringt auch die Sperrschicht zwischen Basis und Kollektor. → Damit fließt ein Kollektorstrom, der Transistor ist leitend geworden. Das heißt also, mit einem kleinen Basisstrom lässt sich der Kollektorstrom (groß) steuern. Kap.12 Übertragung und Verarbeitung von Daten

  25. Transistor Kap.12 Übertragung und Verarbeitung von Daten

  26. V1: Prinzip des Transistors • Versuch 1: Prinzip des Transistors • Liegt nur zwischen Emitter und Kollektor eine Spannung an, so ist ein pn-Übergang immer in Sperrrichtung. Welcher ??? • Legen wir nun eine Hilfsspannung zwischen Basis und Emitter an, fließt……………………….., der den Transistor ……….. macht. • Mit einem kleinen Basisstrom kann also der Transistor Zwischen B und C ein kleiner Basisstrom leitend gesteuert werden. Kap.12 Übertragung und Verarbeitung von Daten

  27. V2:Spannungsteilerschaltung: • Da es nicht sehr sinnvoll wäre zwei verschiedene Spannungsquellen zu verwenden (eine für den Basis - Emitterkreis, eine für den Emitter - Kollektorkreis, verwendet man eine so genannte Spannungsteilerschaltung. • Regle den Regelwiderstand auf 0 Ohm! ---> Zwischen Basis und Emitter liegt eine Spannung von 0 Volt. ---> Der Transistor ……..Regle den Regelwiderstand auf 10 kOhm! ---> Zwischen Basis und Emitter liegt etwa eine Spannung von ……….. • Der Transistor …………………, was man Versuch 2:Spannungsteilerschaltung: sperrt 3,5 V ist leitend geworden. am Leuchten der Lampe erkennt. Kap.12 Übertragung und Verarbeitung von Daten

  28. V3: Stolperdraht • Wird an Stelle des regelbaren Widerstandes vom vorigen Versuch ein Draht geschaltet, ist die Spannung zwischen Basis und Emitter …… V. Transistor ………….. • Zieht man den Draht heraus, ………………………….. Es fließt ein Basisstrom, weil……………………………………………… …………………... 0 sperrt. liegt eine Spannung an. die Basis über den 10 KOhm Widerstand mit dem Pluspol verbunden ist. Kap.12 Übertragung und Verarbeitung von Daten

  29. V 4: Automatische Beleuchtung • Statt des regelbaren Widerstandes von Versuch 2 wird ein LDR (Light Dependend Resistor) zwischen Basis und Emitter geschaltet. • Wird er belichtet, nimmt der Widerstand ……….., die Spannung zwischen Basis und Emitter………... Transistor ………….. • Wird abgedunkelt, wird der Transistor …………, die Lampe ………….. ab sinkt. sperrt. leitend leuchtet. Kap.12 Übertragung und Verarbeitung von Daten

  30. V 5: Transistor als Verstärker • Der Basisstrom wird durch das Mikrophon im Rhythmus der Schallschwingungen verändert. • Diese Änderungen übertragen sich auf den viel stärkeren Kollektorstrom. • Lautsprecher gibt Sprache, Musik usw. wieder. Vgl. Buch Seite 35 Kap.12 Übertragung und Verarbeitung von Daten

  31. 12.2.3 Die Solarzelle Kap.12 Übertragung und Verarbeitung von Daten

  32. p-Leiter Kontakte Kontakt Wirkungsweise der Solarzelle n-Leiter Kap.12 Übertragung und Verarbeitung von Daten

  33. n-Leiter Kontakte p-Leiter Kontakt Wirkungsweise der Solarzelle • Wird die Solarzelle belichtet, so bilden sich infolge des inneren photoelektrischen Effekts, neue freie Ladungsträgerpaare. • Die Elektronen wandern wegen des anliegenden Feldes, in die n-Schicht, die Löcher in die p-Schicht. • Die n-Schicht wird so zum Minus-Pol, die p-Schicht zum Plus-Pol Kap.12 Übertragung und Verarbeitung von Daten

  34. Ausbeute bei Solarzellen • Die Silizium-Solarzelle liefert ca. 0,5V • Wirkungsgrad für polykristalline Zellen ca. 12% • Für eine Leistung von 1kW benötigt manca. 10 m² • Solarkonstante: 1,36kW/m² . (Überlege: ca. 1kw/m² . 0,1 . 10 m² = 1 kW) • Das ergibt im Jahr ca. 1000kWh. • amorphe Silizium-Solarzellen haben einen Wirkungsgrad von ca. 7%. Sie werden für Taschenrechner usw. eingesetzt. Kap.12 Übertragung und Verarbeitung von Daten

  35. Die Solarzelle Kap.12 Übertragung und Verarbeitung von Daten

  36. Beispiele Kap.12 Übertragung und Verarbeitung von Daten

  37. Beispiele Kap.12 Übertragung und Verarbeitung von Daten

  38. 12.3 Elektromagnetische Schwingungen Der LC-Schwingkreis Versuch: 6 V C L Kondensator wird aufgeladen, dann wird Schwingkreis geschlossen. Am Oszillograph wird eine gedämpfte Schwingung beobachtet. Kap.12 Übertragung und Verarbeitung von Daten

  39. LC-Schwingkreis elektrische Energie magnetische Energie magnetische Energie elektrische Energie Kap.12 Übertragung und Verarbeitung von Daten

  40. LC-Schwingkreis Der Kondensator entlädt sich über die Spule. In der Spule wird ein Magnetfeld aufgebaut. Ist der Kondensator entladen, bricht das Magnetfeld zusammen, wodurch eine Induktionsspannung induziert wird.  Induktionsstrom fließt (Lenzsche Regel) in derselben Richtung weiter und lädt den Kondensator entgegengesetzt auf. usw. Aufgrund des Ohmschen Widerstandes der Leitungen nimmt die Schwingungsamplitude ab. Kap.12 Übertragung und Verarbeitung von Daten

  41. Die Schwingung, die ein LC-Schwingkreis ausführt, ist gedämpft und kommt infolge der Verluste an den Leitungswiderständen zum Stillstand. Abhilfe: Rückkopplung Baue mit den Schülerübungsgeräten die folgende Rückkopplungs-schaltung nach! Der Schwingkreis besteht aus dem Kondensator und der Spule mit 1600 Windungen. Eine zweite Spule mit 800 Windungen ist induktiv an die Schwing-kreisspule gekoppelt. Sie hat die Aufgabe, die Basis eines Transistors anzusteuern und so im Takt des Schwingkreises den Transistor im richtigen Augenblick leitend zu machen, um die durch ohmsche Verluste "verlorene" Energie nachzu-liefern. Der veränderliche Widerstand (10k) dient zur Einstellung des Arbeitspunktes des Transistors. Kap.12 Übertragung und Verarbeitung von Daten

  42. Kap.12 Übertragung und Verarbeitung von Daten

  43. Versuch 1: Verwende den Kondensator 1000µF und schalte ein Voltmeter mit 0‑Punkt in der Mitte parallel zum Schwingkreis. Ergebnis: Versuch 2: Entferne das Voltmeter von vorhin und verwende den 1µF-Kondensator. Stecke einen Kopfhörer in die dafür vorgesehene Buchse. Verschiebe das Joch des Eisenkerns! Ergebnis: Kap.12 Übertragung und Verarbeitung von Daten

  44. 12.3.1 Rundfunk Amplitudenmodulation: NF-Signale im Tonbereich können als elektromagnetische Welle nicht abgestrahlt werden. Daher benötigen wir ein HF-Signal als Trägerwelle mit konstanter Amplitude. Das NF-Signal wird der Trägerwelle überlagert. Dieses wird nicht addiert, sondern moduliert. Dabei gibt es Amplitudenmodulation, Frequenzmodulation und Phasenmodulation. Kap.12 Übertragung und Verarbeitung von Daten

  45. Amplitudenmodulation: Die Amplitude der Trägerschwingung wird im Rhythmus der NF verändert. Amplitudenmodulation wird bei LW, MW und KW angewendet. Sie ist störanfälliger und hat nicht so eine gute Übertragungsqualität wie die Frequenzmodulation. Frequenzmodulation: Hier wird die Frequenz der Trägerschwingung mit der NF moduliert. Anwendung bei UKW Die so erzeugten modulierten Schwingungen werden verstärkt und über eine Antenne abgestrahlt. Sie sendet elektromagnetische Wellen aus. Kap.12 Übertragung und Verarbeitung von Daten

  46. Radiosender Tonschwingungen AM-HF-Schwingungen HF-Schwingungen Kap.12 Übertragung und Verarbeitung von Daten

  47. Empfänger Modulierter pusierender Gleichstrom Tonfrequenz verstärkt Modulierter HF-Strom Kap.12 Übertragung und Verarbeitung von Daten

  48. Radiosender und Empfänger Kap.12 Übertragung und Verarbeitung von Daten

  49. 12.3.2 Das Fernsehen Fernsehkamera und Bildschirm arbeiten mit Elektronen. Kathodenstrahlröhre: Versuch: Schattenkreuzröhre: Hochspannung von ca. 8kV anlegen. Am Schirm ist der Schatten des Kreuzes sichtbar. Die Röhre ist ausgepumpt. Die Kathode (-) sendet Elektronen aus, die von der Anode (+ ) angezogen werden. Die Ausbreitungsrichtung ist geradlinig. Daher der Schatten. Die Elektronen selbst sind nicht sichtbar. Die Glaswand ist als Leuchtschirm ausgebildet. D. h., wenn Elektronen auftreffen sendet der Schirm sichtbares Licht aus. Wir nähern einen Magneten:  Der Elektronenstrahl (auch Kathodenstrahl) wird abgelenkt. Kap.12 Übertragung und Verarbeitung von Daten

  50. Die Braunsche Röhre Glaskolben ist evakuiert. Aus einer Glühkathode (1) treten Elektronen aus, die sich geradlinig ausbreiten. Sie werden zwischen Kathode und Ringanode (3) beschleunigt. Mit dem Wehneltzylinder (2) lässt sich die Helligkeit einstellen. Nach der Ringanode wird der Elektronenstrahl durch zwei Paare von Abklenkplatten (4), (5) abgelenkt. Kap.12 Übertragung und Verarbeitung von Daten

More Related