1 / 50

Objectives

Al- Maarefa College for Science and Technology INFO 232: Database systems Chapter 4 Entity Relationship (ER) Modeling Instructor Ms. Arwa Binsaleh. Objectives. In this chapter, students will learn: The main characteristics of entity relationship components

aldona
Download Presentation

Objectives

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Al-Maarefa College for Science and TechnologyINFO 232: Database systemsChapter 4Entity Relationship (ER) ModelingInstructorMs. Arwa Binsaleh

  2. Objectives • In this chapter, students will learn: • The main characteristics of entity relationship components • How relationships between entities are defined, refined, and incorporated into the database design process • How ERD components affect database design and implementation • That real-world database design often requires the reconciliation of conflicting goals

  3. The Entity Relationship Model (ERM) • ER model forms the basis of an ER diagram • ERD represents conceptual database as viewed by end user • ERDs depict database’s main components: • Entities • Attributes • Relationships

  4. Entities • Refers to entity set and not to single entity occurrence • Corresponds to table and not to row in relational environment • In Chen and Crow’s Foot models, entity is represented by rectangle with entity’s name • Entity name, a noun, written in capital letters

  5. Attributes • Characteristics of entities • Chen notation: attributes represented by ovals connected to entity rectangle with a line • Each oval contains the name of attribute it represents • Crow’s Foot notation: attributes written in attribute box below entity rectangle

  6. Attributes (cont’d.) • Required attribute: must have a value • Optional attribute: may be left empty • Domain: set of possible values for an attribute • Attributes may share a domain • Identifiers: one or more attributes that uniquely identify each entity instance • Compositeidentifier: primary key composed of more than one attribute

  7. Attributes (cont’d.) • Composite attribute can be subdivided • Simple attribute cannot be subdivided • Single-value attribute can have only a single value • Multivalued attributes can have many values

  8. Attributes (cont’d.) • M:N relationships and multivalued attributes should not be implemented • Create several new attributes for each of the original multivalued attributes’ components • Create new entity composed of original multivalued attributes’ components • Derivedattribute: value may be calculated from other attributes • Need not be physically stored within database

  9. Relationships • Association between entities • Participants are entities that participate in a relationship • Relationships between entities always operate in both directions • Relationship can be classified as 1:M • Relationship classification is difficult to establish if only one side of the relationship is known

  10. Connectivity and Cardinality • Connectivity • Describes the relationship classification • Cardinality • Expresses minimum and maximum number of entity occurrences associated with one occurrence of related entity • Established by very concise statements known as business rules

  11. Existence Dependence • Existencedependence • Entity exists in database only when it is associated with another related entity occurrence • Existenceindependence • Entity can exist apart from one or more related entities • Sometimes such an entity is referred to as a strong or regular entity

  12. Relationship Strength • Weak (non-identifying) relationships • Exists if PK of related entity does not contain PK component of parent entity • Strong (identifying) relationships • Exists when PK of related entity contains PK component of parent entity

  13. Weak Entities • Weakentity meets two conditions • Existence-dependent • Primary key partially or totally derived from parent entity in relationship • Database designer determines whether an entity is weak based on business rules

  14. Relationship Participation • Optionalparticipation • One entity occurrence does not require corresponding entity occurrence in particular relationship • Mandatoryparticipation • One entity occurrence requires corresponding entity occurrence in particular relationship

  15. Relationship Degree • Indicates number of entities or participants associated with a relationship • Unaryrelationship • Association is maintained within single entity • Binaryrelationship • Two entities are associated • Ternaryrelationship • Three entities are associated

  16. Recursive Relationships • Relationship can exist between occurrences of the same entity set • Naturally found within unary relationship

  17. Associative (Composite) Entities • Also known as bridge entities • Used to implement M:N relationships • Composed of primary keys of each of the entities to be connected • May also contain additional attributes that play no role in connective process

  18. Developing an ER Diagram • Database design is an iterative process • Create detailed narrative of organization’s description of operations • Identify business rules based on description of operations • Identify main entities and relationships from business rules • Develop initial ERD • Identify attributes and primary keys that adequately describe entities • Revise and review ERD

  19. Database Design Challenges: Conflicting Goals • Database designers must make design compromises • Conflicting goals: design standards, processing speed, information requirements • Important to meet logical requirements and design conventions • Design is of little value unless it delivers all specified query and reporting requirements • Some design and implementation problems do not yield “clean” solutions

  20. Summary • Entity relationship (ER) model • Uses ERD to represent conceptual database as viewed by end user • ERM’s main components: • Entities • Relationships • Attributes • Includes connectivity and cardinality notations

  21. Summary (cont’d.) • Connectivities and cardinalities are based on business rules • M:N relationship is valid at conceptual level • Must be mapped to a set of 1:M relationships • ERDs may be based on many different ERMs • UML class diagrams are used to represent the static data structures in a data model • Database designers are often forced to make design compromises

More Related