1 / 30

Soutenance de stage Programmation Orientée Émotion

Soutenance de stage Programmation Orientée Émotion. Kévin Darty 7 septembre 2011 Responsable : Nicolas Sabouret. Introduction. Méthode de programmation Résolution de problème [Hart&al 68] Informatique affective [Darwin&al. 02] Émotion Cadre de programmation. Plan. Classe de problème

alessa
Download Presentation

Soutenance de stage Programmation Orientée Émotion

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Soutenance de stageProgrammation Orientée Émotion Kévin Darty 7 septembre 2011 Responsable : Nicolas Sabouret

  2. Introduction • Méthode de programmation • Résolution de problème [Hart&al 68] • Informatique affective [Darwin&al. 02] • Émotion • Cadre de programmation

  3. Plan • Classe de problème • États de l’art • Résolution de problème • Affective computing • Modèle • Implémentation • Évaluation • Conclusion • Bibliographie

  4. Classe de problème

  5. Classe de problème • Sans connaissance du but

  6. Classe de problème • Sans connaissance du but • Multi objectifs

  7. Classe de problème • Sans connaissance du but • Multi objectifs • Dynamique

  8. Classe de problème • Sans connaissance du but • Multi objectifs • Dynamique • Ressources limitées

  9. Classe de problème • Sans connaissance du but • Multi objectifs • Dynamique • Ressources limitées • Temps limité

  10. Classe de problème • Sans connaissance du but • Multi objectifs • Dynamique • Ressources limitées • Temps limité • Partiellement observable

  11. Classe de problème • Sans connaissance du but • Multi objectifs • Dynamique • Ressources limitées • Temps limité • Partiellement observable • Complexe

  12. État de l’art : résolution de problème • Normatif • Exploration : A* [Hart&al 68] • Optimum /Temps limité • Planification : GraphPlan[Blum&Furst 97] • Base de règle /Dynamique / Problème abstrait

  13. État de l’art : résolution de problème • Normatif • Exploration : A* [Hart&al 68] • Optimum /Temps limité • Planification : GraphPlan[Blum&Furst 97] • Base de règle /Dynamique • Descriptif • Comportement : FreeFlowHierarchies[Tyrrell 93] • Compromis / Problème abstrait • Animat : MHiCS[Robert&Grillot 03] • Adaptatif / Complexe • Architecture psychologique : ACT-R[Anderson&al. 04] • Humain / Méthode simple

  14. État de l’art : informatique affective • Mémoire • Mémoire à long terme [Atkinson&Shiffrin 68] • Vécu  mémorisation  apprentissage possible • Mémoire de travail [Atkinson&Shiffrin 68] [Miller 56] • Concentration  Minimise l’espace de recherche

  15. État de l’art : informatique affective • Mémoire • Mémoire à long terme [Atkinson&Shiffrin 68] • Vécu  mémorisation  apprentissage possible • Mémoire de travail [Atkinson&Shiffrin 68] [Miller 56] • Concentration  Minimise l’espace de recherche • Émotion • Catégoriel [Plutchik 80] • Dimensionnel [Mehrabian&Russell 74]

  16. Conclusion • Modélisation de la classe de problème ? • Résolution généralisée de problèmes ? • Heuristiques émotionnelles ? • Réduire la tâche du programmeur ? • Séparation problème / solution • Niveau d’abstraction • Solveur Orienté Émotion automatisé • Environnement de programmation aisé

  17. Modèle (1/4) : architecture

  18. Modèle (2/4) : Environnement

  19. Modèle (3/4) : Solution

  20. Modèle (4/4) : Solveur

  21. Implémentation (1/2)

  22. Implémentation (2/2)

  23. Évaluation (1/4) : Labyrinthe

  24. Évaluation (2/4) : Conclusion • Problème • Dynamique • Partiellement observable • A temps limité • Séparation problème / solution • Heuristiques émotionnelles • Comportements adaptés • Mise en œuvre rapide

  25. Évaluation (3/4) : Protocole • Testeurs humains • Similitudes sur une même instance de labyrinthe • Taux de réussite • Séquences d’actions [Levenshtein 66] • Nombres de tours • Nombres d’actions • Trésors récoltés • Tests • 2 configurations : avec/sans monstres • 30 personnes X 4 instances de labyrinthe

  26. Évaluation (4/4) : Attentes • Taux de réussite proches • Longueurs de séquence et nombres de tour équivalents • Comportements similaires • Logique : parcours • Émotionnel : réaction aux perceptions par un choix de comportement semblable

  27. Conclusion & perspectives • Modélisation de la classe de problème • Tache réduite : • Séparation problème / solution • Appraisal automatisé • Heuristiques émotionnelles indépendantes du problème • Comportement adapté du solveur • Réaction par émotion • Concentration via les filtres et la WM • Utilisation stricte de la mémoire • Évolution de l’importance d’une perception • Apprentissage du critère de dominance • Application du protocole d’évaluation

  28. Bibliographie (1/2) • [Anderson&al. 04] Anderson, J.R. and Bothell, D. and Byrne, M.D. and Douglass, S. and Lebiere, C. and Qin, Y. An integrated theory of the mind. Psychological review, vol.111.4:1036, 2004. • [Atkinson&Shiffrin 68] Atkinson, R.C. and Shiffrin, R.M. Human memory: A proposed system and its control processes. The psychology of learning and motivation: Advances in research and theory, vol. 2:89-195, 1968. • [Baars&Franklin 09] Baars, B.J. and Franklin, S. Consciousness is computational: The LIDA model of global workspace theory. International Journal of Machine Consciousness, vol. 1:23-32, 2009. • [Baars 05] Baars, B.J. Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Progress in brain research, vol. 150:45-53, 2005. • [Batra&Holbrook 90] Batra, R. and Holbrook, M.B. Developing a typology of affective responses to advertising. Psychology and Marketing, vol.7.1:11-25, 1990. • [Blum&Furst 97] A. Blum et M. Furst. Fast Planning Through Planning Graph Analysis. Artificial Intelligence, 90:281-300, 1997. • [Bonnet&Geffner 98] Bonnet, B. and Geffner, H. HSP: Heuristic search planner. Citeseer, 1998. • [Caplat 02] Caplat, G. Modélisation cognitive résolutions de problèmes, Presses polytechniques et universitaires romandes, 2002. • [Conklin 06] Conklin, J. Wicked problems & social complexity. Citeseer, 2006. • [Darwin&al. 02] Darwin, C. and Ekman, P. and Prodger, P. The expression of the emotions in man and animals, Oxford University Press, 2002. • [Do&Kambhampati 01] Do, M.B. and Kambhampati, S. Sapa: A domain-independent heuristic metric temporal planner. Proceedings of the 6th EuropeanConference on Planning, 190-120, 2001. • [Edell&Burke 87] Edell, J.A. and Burke, M.C. The power of feelings in understanding advertising effects. The Journal of Consumer Research, vol. 14.3:421-433, 1987. • [Fikes&Nilsson 71] Fikes, R.E. and Nilsson, N.J. STRIPS: A new approach to the application of theorem proving to problem solving. Artificial intelligence, vol2.3/4:189-208, 1971. • [Greeno 78] Greeno, J.G. Natures of problem-solving abilities. Lawrence Erlbaum, 1978. • [Guillot&Daucé 03] Guillot, A. & Daucé, E. Approche dynamique de la cognition artificielle. HèrmesScienes Publications, 2003. • [Hart&al 68] Hart, P.E., Nilsson, N.J. et Raphael, B. A formal basis for the heuristic determination of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on, 4:100-107, 1968. • [Hoffmann&Nebel 01] Hoffmann, J. et Nebel, B. FF: The fast-forward planning system. Journal of Artificial Intelligence Research, 14.1:253-302, 2001. • [James&al. 81] James, W. and Burkhardt, F. and Bowers, F. and Skrupskelis, I.K. The principles of psychology, Harvard University Press, vol. 12, 1981. • [Lazarus&Folkman 96] Lazarus, R. & Folkman, S. Stress, appraisal and coping. Springer, 1996.

  29. Bibliographie (2/2) • [Levenshtein 66] Levenshtein, V.I. Binary codes capable of correctingdeletions, insertions, and reversals. Soviet PhysicsDoklady, vol. 10,8:707-710, 1966. • [Mehrabian&Russell 74] Mehrabian, A. and Russell, J.A. An approach to environmental psychology. the MIT Press, 1974. • [Miller 56] Miller, G.A. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological review. Vol 63.2, 81, 1956. • [Park&Koelling 89] Park, Y.B. and Koelling, C.P. An interactive computerized algorithm for multicriteria vehicle routing problems. Computers & Industrial Engineering, vol. 16.4:477-490, 1989. • [Plutchik 80] Plutchik, R. Emotion: A psychoevolutionarysynthesis. Harper & Row New York, 1980. • [Rittel&Webber 73] Rittel, H.W.J. and Webber, M.M. Dilemmas in a general theory of planning. Policy sciences, 4.2:155-169, 1973. • [Robert&Grillot 03] Robert, G. and Guillot, A. MHiCS, a modular and hierarchical classifier systems architecture for bots. 4th International Conference on Intelligent Games and Simulation (GAME-ON’03), 140-144, 2003. • [Rosenblatt&Payton 89] Rosenblatt, J.K. & Payton, D.W. A fine-grained alternative to the subsumption architecture for mobile robot control. IEEE/INNS International Joint Conference on Neural Networks, 317-323, 1989. • [Rosenbloom&al. 93] Rosenbloom, P.S. & Laird, J. & Newell, A. The SOAR papers: Research on integrated intelligence. Mit Press Cambridge, vol. 1, 1993. • [Russell 80] Russell, J.A. A circumplex model of affect.Journal of personality and social psychology, vol. 39.6:1161, 1980. • [Schmeichel&al. 08] Schmeichel, B.J. and Volokhov, R.N. and Demaree, H.A. Working memory capacity and the self-regulation of emotional expression and experience. Journal of Personality and Social Psychology, vol. 95.6:1526, 2008 • [Tyrrell 93] Tyrrell, T. The use of hierarchies for action selection, Adaptive Behavior, vol. 1.4:387, 1993.

  30. Questions

More Related