120 likes | 285 Views
Modeling the Input Optics using E2E. S. Yoshida, R. Dodda, T. Findley, K.Rogillio, and N. Jamal, Southeastern Louisiana University – Acknowledgement – LIGO Livingston Observatory, SURF 2004, NSF B. Bhawal, M. Evans, V. Sannibale, and H. Yamamoto. Objectives.
E N D
Modeling the Input Optics using E2E S. Yoshida, R. Dodda, T. Findley, K.Rogillio, and N. Jamal, Southeastern Louisiana University – Acknowledgement – LIGO Livingston Observatory, SURF 2004, NSF B. Bhawal, M. Evans, V. Sannibale, and H. Yamamoto LIGO Laboratory
Objectives A simulation model will be very convenient to study the impact of ground motion on the input optics, and on the input beam. Therefore, we seek to do the following: 1. Build an IO box using E2E. 2. Integrate it with the Simligo. 3. Run simulation with realistic ground motion. LIGO Laboratory
The Process 1. Make an Small Optic Suspension (SOS) box, and validate it. 2. Use the SOS box to damp the motion of an optic when realistic ground motion is given. 3. Create a Mode Cleaner (MC) box, and try to lock the cavity when realistic ground motion is given to the Mode Cleaner optics. 4. Put all the optics ( MCs, SM, and MMTs ) in order, and create the Input Optic (IO) box. 5. Use the IO box in Simligo, and run the simulation for the entire detector. LIGO Laboratory
Validating SOS – Role of the Table Top motion MC1 Yaw motion using two different schemes Schematic diagram of the SOS box with HAM motion as input LIGO Laboratory
òò ACCX dt dt HAM table Vibration isolation stacks u v ¶ ¶ 1 1 - = - Table yaw = ( ) { ik u ( y , t ) ik v ( x , t )} 1 2 Accelerometer ¶ ¶ 2 y x 2 w ± w ± ( ) ( ) i t k y i t k x = = u ( y , t ) A e , v ( x , t ) A e 1 1 2 2 0 0 = = w q = w - k k k ( ) i k ( ){ u ( y , t ) v ( x , t )} 1 2 Calculating table’s Yaw X in Table u HAM stack box Table v Y in LIGO Laboratory
Dependence of k on frequency LIGO Laboratory
SM (0.75, 0.45) V MMT1 (0.1, 0.4) MC3 (0.75, -0.05) U (0, 0) q MMT3 (-0.8, 0.6) MC1 (0.75, -0.25) Calculating the suspension point motions of the optics u(x,y)= U - yq v(x,y)= V + xq U: table’s center of mass translational motion V: table’s center of mass translational motion q: table’s yaw motion LIGO Laboratory
MC2 and MC3 LIGO Laboratory
MC1 pendular motion with local damping LIGO Laboratory
Mode Cleaner box – Preliminary Results LIGO Laboratory
IO box with the full Detector box LIGO Laboratory
Conclusions • HAM table motion estimated from the ACC[XY] DAQ signal • MC1, MC3 local damping optimized • MC box constructed and being tested • Combination of MC and IFO in progress LIGO Laboratory