1 / 25

Mathematical and Computational Issues for Live Cell Segmentation in Fluorescence Microscopy

Metodi Matematici nel Trattamento delle Immagini Sapienza Università di Roma 15-16 Gennaio 2013. Mathematical and Computational Issues for Live Cell Segmentation in Fluorescence Microscopy. Laura Antonelli. laura.antonelli@cnr.it.

alicia
Download Presentation

Mathematical and Computational Issues for Live Cell Segmentation in Fluorescence Microscopy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Metodi Matematici nel Trattamento delle Immagini SapienzaUniversitàdi Roma 15-16 Gennaio 2013 Mathematical and Computational Issues for Live Cell Segmentation in Fluorescence Microscopy Laura Antonelli laura.antonelli@cnr.it Institutefor High Performance Computing and Networking (ICAR)

  2. ResearchContext • FIRB 2010 project – “Future in Research” Programme RoleofPolycomb mediatedepigeneticsignature in laminopathies: analysisby innovative genome wide technology and high-performancenumericalalgorithms for Live CellImaging • CNR Insititutesinvolved INMM • Instituteof • Neurobiologyand • Molecular Medicine • Institutefor • High Performance Computing • and Networking (Lanzuolo, Casalbore, Ciotti) (Oliva, Antonelli, Gregoretti)

  3. Laminopathies • Gene regulationis the processofturninggenes on and off. • Itisaccomplishedby a varietyofmechanisms • includingregulatoryproteinslikePolycombgroupproteins. cell DNA lamin chromosome nucleus mutation Laminopathies are a group of rare  genetic disorders caused by mutations in genes encoding proteins of the nuclear lamin.

  4. RoleofPolycombproteins in laminopathies • Whatis the involvementoflaminin the coordinationof gene expressionregulatingsub-set ofgenesthroughdirector indirectinteractionswithPolycombcomplexes? merge lamin Polycombs Fluorescenceimages highlightdramatically aberrant morphology in cell nucleus of progeria patients. Normal progeriasyndrome • Identification of new candidate genes involved in laminopathies • Design of algorithms to identify and analyze lamin and polycombs • interaction in fluorescence images microscopy

  5. FluorescencemicroscopyIssues • Huge amount of data • many image sequences • # frames per sequence: from 60 to 120 • single frame size: 1024 x 1280 • Manualanalysistoextract information bymeansoflarge volume of light microscopyimagesisslow,timeconsuming • andsubjecttoobservervariance • FeaturesofFluorescenceimages • The varietyoffluorescentproteins and labelingtechniquesleadstoconsiderabledifferences in the appearanceofcells • Sincecells are sensibletophotodamage, fluorescencemicroscopies produce imageswithvery low contrast • Fluorescenceimagesmaycontainautofluorescence • Existing imaging tools are limited in their scope and capacity to analyze live cell images

  6. Goals Work in progress 2013 - 2015 Development of an open source library for live cell imaging in high performance computingenvironment • Visualizing and Analysis • Visualizing, quantifying and modelling cellular and sub-cellular morphological features with high spatial and temporal resolution • Preprocessing/Postprocessing • denoising, deblurring, scaling, contrastenhancement, featuresextraction • Processing • segmentation “easy” descriptionofcellimages •  featuresextraction • tracking temporalanalysisofdynamiccellularprocesses

  7. CellSegmentationModels and Methods • The kindoffeaturestobehighlightedisdirectlyrelatedto the biologicalexperiment, therefore the choiceof the modelisfundamental in orderto produce a correctsegmentation. • microscopyimagesfeatures: • smoothboundaries • twophaseimages: regionsof interest and background • presenceofnoise • ActiveContoursModels • model image contours as curves that match the highest gradient • edge detector based on imagegradient • edge detector NOT based on imagegradient • RegionBasedModels • provide a simplifiedimageas a combinationofregionsofcostantintensities: • Mumford and Shahapproach • Global tresholding • watershedalgorithm

  8. ActiveContourModels • bounded open set withboundary∂Ω • givenimage • parameterized curve Kass, Witkin, Terzopoulus, “Snakes: ActiveContourModels”, Int. J. Comput. Vis. ClassicalModel Chan, Vese, “ ActiveContourWithoutEdges”, IEEE Trans. on Im. Proc. Chan-VeseModel

  9. AC Chan-VeseLevel Set Formulation Sethian, “ Level Set Methods and Fast MarchingMethods” The paramaterizedcurve C Ωisrepresentedby the zero level set of a Lipschtzfunction :  Keepingfixed, we can computec1 and c2asfunctionof

  10. Regularization Wedetermine bymeansthe gradient-descentmethod and Euler-Lagrangeequations Regularizedfunction Since the functional is non-convex, the use of regularized functions can drive the Euler-Lagrange equation towards the global minimizer Euler-Lagrangeequation

  11. NumericalAlgorithm Chan-VeseSegmentation • Inizialize 0 • forn = 1,2, …, Nmax • computec1( n) andc2( n) • compute n+1 solving EL equation • reinitialize n+1 to the signeddistancefunction • Checkwethersolutionisstationary. • If yes, stop iterations The reinitialization process is made by using the following PDE:

  12. test 1: fluorescenceimagesegmentation 1/3 • Mouse embryonic • stemcells • Analysisof the laminrole in PcGmediatedmuscleand neuronalcelldifferentiation Polycombs DNA Imagesize 1024 X 1280 • touchingcellsnotseparated!

  13. test 1: fluorescenceimagesegmentation 2/3 ModelParameters Architecture CPU Intel I5 750 @2.67GHz (quad-core) MEMORY 4GB gcc version 4.7.1 OS debian wheezy Imagelibrarylibtiff Polycombs DNA Polycombs DNA Imagesize 1024 X 1280

  14. test 1: fluorescenceimagesegmentation 3/3 ModelParameters Architecture CPU Intel I5 750 @2.67GHz (quad-core) MEMORY 4GB gcc version 4.7.1 OS debian wheezy Imagelibrarylibtiff Polycombs DNA Polycombs Featuresextraction

  15. test 2: time-lapsesegmentation ModelParameters • Mouse embryonicstemcells, • Noisedimages 512 X 256 frame 1 segmentation frame 31 • Verysmoothboundaries! frame 61

  16. test 3: imagesequencetracking Chan-VeseTrackingalgorithm • Inizialize 0 • fork = 1,2, …, Nframes • forn = 1,2, …, Nmax • computec1( n) andc2( n) • compute n+1 solving EL equation • reinitialize n+1 to the signeddistancefunction • Checkwethersolutionisstationary. If yes, stop iterationsofn counter • Initialize k+1 = k Architecture • Mouse embryonicstemcells • Timelapseimagesequence CPU Intel I5 750 @2.67GHz (quad-core) MEMORY 4GB gcc version 4.7.1 OS debian wheezy Imagelibrarylibtiff 512 X 256 X 61 frame

  17. Model and AlgorithmEvaluation • Advantages • goodsegmentationcellimageswithverysmoothboundaries • robustnesswithrespectnoise • scale adaptivity • semplicityofimplementation • low computational cost of a single iteration • Drawbacks • lackofconvexity (presenceoflocal minima) • dependence on initialcontourposition • high computationalcostforstepreinizializationoflevel set • bad segmentationforimageswithintensityinhomogeneity • tounchingcellsnotseparated • slow convergence rate (toomanyiterationsfortracking!) • possibletrapping inlocalminimum

  18. Improving the model Work in progress Extendingmulti-phasesegmentation L. Vese, T. Chan “A MultiphaseLevel Set FrameworkforImageSegmentationUsing the MumfordanShahModel” Work in progress Introducinglocalstatisticalinformation X.FWang, D. Huang, H. Xu “An EfficientlocalChan-Vesemodelforimagesegmentation”

  19. Improving the solutionmethod Approach the problem from the optimization point of view Work in progress In collaborationwith D. di Serafino and V. De Simone, SecondUniversityofNaples. • Fastergradient-descentapproaches (non-monotonemethods, exploitation of geometricproperties of the variationalmodel, …) • Newton-typemethods, usingapproximations of the secondvariation • - efficient iterative linear algebra techniques • globalizationtechniques (linesearch or trust region) • Optimizationmethodsfor L1-regularized Chan-Vesemodel (splitBregman, alternate direction of multipliers)

  20. Speeding-up the implementation Work in progress Introducing Data Parallelism in trackingalgorithm • Inizialize 0 • fork = 1,2, …, Nframes • forn = 1,2, …, Nmax • computec1( n) andc2( n) • compute n+1 solving EL equation • Reinitialize n+1 to the signeddistancefunction • Checkwethersolutionisstationary. If yes, stop iterationsofn counter • Initialize k+1 = k Framesdistributionbetweenprocesses

  21. Acknowledgments • Dr C. Lanzuolo at INMM-CNR forfruitfuldiscussion on biologicalexperiments and forprovidingfluorescenceimagesof mouse embryonicstemcells • Dr. G. Cavalli at InstituteofHumanGenetic–CNRS (France) forprovidingtime-lapsesequencesofMouse embryonicstemcells Thanksforyourattention • any comments and suggestions • are welcome ! laura.antonelli@cnr.it

  22. Goalsof FIRB Project A large scale approach • INMM APPROACH  High-Throughput Screening (HTS): • The generation of 4C libraries of lamin dependent gene interactions • Identification of new candidate genes involved in laminopathies that could be useful for prognosis • Investigation of the molecular basis of the disease to eventually design new therapeutical strategies • ICAR APPROACH  High-Throughput Bioimaging (HBS): • Identification of epigenetic dynamics associated with lamin pathology • Design algorithms to identify and analyze biological processes • Development of an open source numerical library for live cell imaging

  23. ActiveContourChan-VeseModel Chan, Vese, “ ActiveContourWithoutEdges”, IEEE Trans. on Im. Proc. • Letbe: • Ωa bounded open set of , with∂Ωitsboundary • a givenimage • a parameterized curve Chan-Vesemodelfinds a contourCthatpartitions the imageu0intotworegions: Ωin(objects)andΩout(background) thatdescribeanoptimalpiecewiseconstant approximationof the image. Internalforce Externalforces

  24. Euler-LagrangeRegularizedEquations Keeping fixed, we can compute Regularizedfunction

  25. Discretization Euler-Lagrangeequationisdiscretized bymeans a finite differencessemi-implicitscheme. Discrete divergenceoperator Rudin, Osher, Fatemi, “ Non Linear Total VariationBasedNoiseRemovalAlgorithm”

More Related