1 / 35

By : Christian Pagé, CERFACS Julien Boé, CERFACS Laurent Terray, CERFACS

Impact of climate change on France watersheds in 2050 : A comparison of dynamical and multivariate statistical methodologies. By : Christian Pagé, CERFACS Julien Boé, CERFACS Laurent Terray, CERFACS Florence Habets, UMR Sisyphe Éric Martin, CNRM, Météo-France. Ouranos, 20 May 2008. Outline.

alisham
Download Presentation

By : Christian Pagé, CERFACS Julien Boé, CERFACS Laurent Terray, CERFACS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Impact of climate change on France watersheds in 2050 :A comparison of dynamical and multivariate statistical methodologies By : Christian Pagé, CERFACS Julien Boé, CERFACS Laurent Terray, CERFACS Florence Habets, UMR Sisyphe Éric Martin, CNRM, Météo-France Ouranos, 20 May 2008

  2. Outline • Problematic of Downscaling • Why use a statistical approach? • Methodology • Statistical Downscaling & Weather Types • Principles & Hypothesis • Validation (also Hydrology) • Application • Impact of climate change on France watersheds • Uncertainties • Comparisons against Quantile-Quantile • Summary & Future Ouranos, 20 May 2008 2

  3. Climate model Meteorological forcings <10km Precipitations (mm/day) Precipitations (mm/day) Perturbed climate meteorological fields ~ 250 km Downscaling Impact model Problematic: Generalities How can we evaluate impacts of climate change? Ouranos, 20 May 2008 3

  4. Statistical relationship: Local fields & Large-scale forcings Resolve dynamics and physics: Numerical model Statistical downscaling Dynamicaldownscaling Problematic: Generalities Downscaling Two main methodologies Better representation physical processes Much less CPU! Can be used separately or in combination Ouranos, 20 May 2008 4

  5. Downscaling Methodologies GHG, Aerosols Statistical Downscaling Dynamical Downscaling MCGOA CNRM-CM3 Boundary Conditions (also Oceanic) Predictors Predictors Regional Model ARPEGE-VR F: Calibration Validation OBS. Raw Forcings Bias correction Spatialisation OBS. Local Forcing variables Impact Model: ISBA-MODCOU 5

  6. 8 km 280 km Global Climate Model Observations Weather Type: southerly winds Arrows: 850 hPa Wind Lines: MSLP anomalies Dynamical downscaling Precipitation anomalies (%) 60 km Regional Climate Model 6

  7. Dynamical downscaling Climate Change 1) Bias Correction Several Methodologies (Déqué, 2007) ► Perturbation ►Quantile-Quantile Δ Obs. Scenario Probability Density Functions Ouranos, 20 May 2008 7

  8. Dynamical downscaling 2) Bias Correction Several Methodologies (Déqué, 2007) ► Perturbation ►Quantile-Quantile Model Present Model Future OBS. Probability Density Functions Ouranos, 20 May 2008 8

  9. Dynamical downscaling 3) Bias Correction Several Methodologies (Déqué, 2007) ► Perturbation ►Quantile-Quantile Corrected Model Present Corrected Model Future Probability Density Functions Ouranos, 20 May 2008 9

  10. Statistical downscaling: General methodology Local Geographical Characteristicstopography, land-use, turbulence Global ScaleClimate Variable L (predictors) MSLP, geopotential, upper-level wind Local ScaleClimate Variable R 10m wind, precipitation, temperature R = F (L, β) β such that║R – F(L, β)║ ~ Min F based on Weather Typing Ouranos, 20 May 2008 10

  11. Statistical downscaling: Current methodology • Based on: • NCEP re-analyses • Weather typing • Mean Sea-Level Pressure • Météo-France Mesoscale Meteorological Analysis (SAFRAN) • France Coverage • 1970-2005 • 8 km spatial resolution from coherent climatic zones • 7 parameters • Precipitation (liquid and solid) • Temperature • Wind Module • Infra-Red and Visible Radiation • Specific Humidity SAFRAN 8-km resolution orography Ouranos, 20 May 2008 11

  12. Statistical downscaling: Current methodology • For a given day j in which we know the Large-Scale Circulation • Find closest weather type (daily data) • Euclidian distance over first ten principal components • Select all Ri days of this type • MSLP and Temperature index • Reconstruct precipitation index: using regression of learning period and MSLP of climate model Boe J., L. Terray, F. Habets and E. Martin, 2006: A simple statistical-dynamical downscaling scheme based on weather types and conditional resampling J. Geophys. Res., 111, D23106. Ouranos, 20 May 2008 12

  13. Statistical downscaling: Current methodology • Look for analogs (15 days) among all Ri days • Closest in terms of precipitation and temperature index • Belonging to the same decile • Randomly choose one day • Use SAFRAN data for the chosen day • Apply temperature correction if Tindex - TNCEP > 2 C • Correct precipitation (solid/liquid) and IR radiation • Applicable if having long enough observed data time series Ouranos, 20 May 2008 13

  14. Statistical downscaling: Validation Is Climate Model simulating correctly Weather Types ? YES Precipitation mm/day Period: 1981-2005 Downscaling: MSLP ARPEGE A1B ScenarioRegional Simulation SST fromCNRM-CM3 model Safran Downscaling DJF 0.6 0.6 7 7 JJA 0.5 5 0.5 5 14

  15. Statistical downscaling: Validation: Hypothesis 3 Main Hypothesis • Predictors • Strong link with regional climate • Simulated correctly by model • Statistical relationship F still valid for perturbed climate. • Cannot be validated or invalidated formally. Also true for physical parameterisations and bias correction. • Predictors encompass completely the climate change signal. Ouranos, 20 May 2008 15

  16. Hypothesis 1: predictors has strong link with regional climate Precipitation: 8 weather types Example for 2 winter type WT1 WT2 MSLP Anomaly NDJFM MSLP Anomaly NDJFM +16 +16 -16 -16 Data courtesy of Météo-France Ratio Pr(reg)/ Pr(moy) Ratio Pr(reg)/ Pr(moy) 0 0 +3.5 +3.5

  17. Hypothesis 1: predictors simulated correctly by model Winter types 1950-1999: WT5 (MSLP, composite anomaly in hPa) Spatial correlation > 0.96for all weather types NCEP Reanalyses ARPEGE GCM-VR

  18. Hypothesis 2 & 3: Predictors encompass completely climate change signal Statistical relationship still valid for perturbed climate SPRING Perfect Model Validation Precipitation mean over France Precipitationmm/day Reconstructed Precipitation amount change in % of current mean (2100_2050) – (2000_1970) A1B Scenario, Spring -0.35 +0.35 18

  19. Statistical downscaling: Validation Tendencies ΣPr 1951-2000ObservationsvsReconstruction Color: station latitudeSouthNorth Changes of weather type occurrence ►Precipitation Tendencies spatial structures (r=0.92) Precipitation 19

  20. Statistical downscaling: Validation Temperature RATIO Temperature Tendencies [Reconstructed] / [Observed] 1951-2000 Period Data courtesy of Météo-France • Weather Type Occurrence changes cannot explain observed temperature tendencies • ► Mandatory to take into account temperature as a predictor Ouranos, 20 May 2008 20

  21. Statistical downscaling: Validation: Hydrology 1200 150 800 Flow Validation LOIRE(Blois) SEINE (Poses) ARIEGE (Foix) Annual Cycle OBS NCEP ARPEGE-VR 0 0 0 Jan to Dec Jan to Dec Jan to Dec 2500 2500 LOIRE (Blois) 250 SEINE (Poses) ARIEGE (Foix) CDF OBS NCEP ARPEGE-VR 0 0 0 0 to 1 0 to 1 0 to 1 VIENNE (Ingrandes 500 Winter Mean OBS NCEP (0.85) SAFRAN (0.97) 0 1960 2010

  22. Statistical downscaling: Validation: Summary • Predictors • Strong link with regional climate • Simulated correctly by model • Predictors encompass completely the climate change signal • Need to use Temperature as a predictor • Watersheds flows are correctly reproduced • Annual Cycle • Annual Variability • Cumulative Density Function Ouranos, 20 May 2008 22

  23. Black-circled: at least 85% models has sign agreement Dispersion: Spatial Mean σ = 18% Multi-Model relative change of watershed Flows (%), 2046/2065 • Application: Impact of climate change on France watersheds Quantifying Uncertainties WINTER: DJF Multi-Model relative change of Downscaled Precip. (%), 2046/2065 Ouranos, 20 May 2008

  24. Application: Impact of climate change on France watersheds Relative change precipitation 2046/2065 vs 1970/1999 in Winter -0.6 +0.6 Statistical downscaling Dynamical Quantile-Quantile downscaling Ouranos, 20 May 2008 24

  25. Application: Impact of climate change on France watersheds Relative change watershed flows 2046/2065 vs 1970/1999 in Winter +0.5 -0.5 Statistical downscaling Dynamical Quantile-Quantile downscaling Ouranos, 20 May 2008 25

  26. Summary - 1 • Statistical downscaling methodology • Validation is very good • Hypothesis of stationarity (regression) • Weather Typing Approach • Low CPU demand • Evaluate uncertainties with many scenarios • Uncertainties of downscaling method are limited • Those of numerical models are, in general, greater Ouranos, 20 May 2008 26

  27. Summary - 2 • Ensemble Mean of Watershed flows • Decreases moderately in Winter (except Alps and SE Coast) • 2050 : important decrease in Summer & Autumn • Robust results, low uncertainty • Strong increase of Low Water days • Heavy flows decrease much less than overall mean Ouranos, 20 May 2008 27

  28. Down the Road… • Whole Code Re-Engineering • Modular approach • Implement several statistical methodologies • Configurable • End-user parameters • Core parameters • Web Portal • Climate-Change Spaghetti to Climate-Change Distribution • Probability Density Function • Re-sampled Ensemble Realisations • M. Dettinger, U.S. Geological Survey (2004) Ouranos, 20 May 2008 28

  29. Merci de votre attention!  Christian Pagé, CERFACS christian.page@cerfacs.fr Julien Boé, CERFACS Laurent Terray, CERFACS Florence Habets, UMR Sisyphe Éric Martin, CNRM, Météo-France Ouranos, 20 May 2008 29

  30. Application: France watersheds: Snow Cover 5 30 Future Present Aug Jul Aug Jul 500 250 Aug Aug Jul Jul • Water Equivalent (mm) of Snow Cover • Pyrenees • 2055 • Grayed zones: min/max 30

  31. Application: France watersheds: Uncertainties Atlantic Ridge Blocking + ~0 20 days NAO+ NAO- + - Models -20 days Correlation Weather Type Occurrence Precipitation -0.5 +0.5 31

  32. Application: Impact of climate change on France watersheds Relative change watershed flows 2046/2065 vs 1970/1999 Perturbation method Winter Corr 0.92 Spring Corr 0.38 +0.5 -0.5 Summer Corr 0.86 Autumn Corr 0.72 32

  33. Application: Impact of climate change on France watersheds Relative change precipitation 2046/2065 vs 1970/1999 in Summer -0.6 +0.6 Statistical downscaling Dynamical Quantile-Quantile downscaling Ouranos, 20 May 2008 33

  34. Application: Impact of climate change on France watersheds Relative change watershed flows 2046/2065 vs 1970/1999 in Summer +0.5 -0.5 Statistical downscaling Dynamical Quantile-Quantile downscaling Ouranos, 20 May 2008 34

  35. Régimes de temps et hydrologie (H1) • Définition de régimes/types de temps discriminants pour les précipitations en France • Variable de circulation de grande échelle: Pression (MSLP), provenant du projet EMULATE (1850-2000, journalier, 5°x5°), précipitations SQR (Météo-France) • Classification multi-variée Précipitations & MSLP, pas de temps journalier, espace EOF. On conserve ensuite uniquement la partie MSLP pour définir les types de temps. Domaine classification MSLP (D1) * 310 stations pour les précipitations 8 à 10 régimes de temps !

More Related