1 / 37

Results of waveform analysis in CHIBIS SAS3 burst VLF records

Results of waveform analysis in CHIBIS SAS3 burst VLF records. Péter Steinbach 1,3 ; Csaba Ferencz 1 ; János Lichtenberger 1 ; Orsolya E. Ferencz 1 ; Péter Szegedi 2 1 Space Research Group, Eötvös Univ., Dept. of Geopysics and Space Sci., Budapest, Hungary, spacerg@sas.elte.hu , +361 372 2906

aloha
Download Presentation

Results of waveform analysis in CHIBIS SAS3 burst VLF records

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Results of waveform analysis in CHIBIS SAS3burst VLF records Péter Steinbach1,3; Csaba Ferencz1; János Lichtenberger1; Orsolya E. Ferencz1; Péter Szegedi2 1 Space Research Group, Eötvös Univ., Dept. of Geopysics and Space Sci., Budapest,Hungary,spacerg@sas.elte.hu,+361 372 2906 2 BL ELECTRONICS, Solymár, Hungary 3 MTA-ELTE Research Group for Geology, Geophys. and Space Sci. (Hun. Acad. Sci.),Budapest, Hungary

  2. PSA-SAS3 VLF waveform recordings Fs: 78125 Hz 2012.03.01-2013.12.23 ~ 1350 burst data segment E electric – ch0, overall ~ 173 minutes Bz magnetic – ch5, overall ~ 116 minutes

  3. PSA-SAS3 VLF waveform recordings Fs: 78125 Hz 2012.03.01-2013.12.23 ~ 1350 burst data segment E electric – ch0, overall ~ 173 minutes Bz magnetic – ch5, overall ~ 116 minutes daytime, nighttime and twilight orbits

  4. electric CH0 DAY NIGHT Bz magnetic CH5 DAY NIGHT

  5. ○main focus : reveal upward propagation characteristics of signals from the atmosphere / ionosphere (location of primary wave sources) , including determination of probable 3D topology of ionospheric ELF/VLF wave propagation, conform to observations – lightning impulses (whistlers) are perfect tools for that (coherent signal, known excitation, strong)

  6. Chibis max. geographic latitudes L=3.5 100 km altitude geomagnetic field lines Earth surface L=2.0 recording fact #1: ionospheric whistler dispersions depend on geomagnetic latitudes; L=1.05 L=1.3 CHIBIS-M E-field ch0 2012.10.20 12:47:08 UT+3 3:50 LT 270.9E 19.24N geographic mlat: 30.3° geomagnetic D0 dispersion: 1.8 s½ L=1.08 geomagnetic equator CHIBIS-M Bz ch5 2012.07.21 23:22:20 UT+3 3:33 LT 107.8E 2.6S geographic mlat: 11.5° geomagnetic D0 dispersion: 2.5 s½ CHIBIS-M E-field ch0 2012.10.24 06:25:01 UT+3 3:13 LT 317.1E 4.8N geographic mlat: 0.8° geomagnetic D0 dispersion: 14.5 s½

  7. Chibis max. geographic latitudes L=3.5 100 km altitude geomagnetic field lines Earth surface L=2.0 recording fact #1: ionospheric whistler dispersions depend on geomagnetic latitudes; maximum D0 dispersions of 0+ whistlers at the equator L=1.05 L=1.3 CHIBIS-M E-field ch0 2012.10.20 12:47:08 UT+3 3:50 LT 270.9E 19.24N geographic mlat: 30.3° geomagnetic D0 dispersion: 1.8 s½ L=1.08 geomagnetic equator CHIBIS-M Bz ch5 2012.07.21 23:22:20 UT+3 3:33 LT 107.8E 2.6S geographic mlat: 11.5° geomagnetic D0 dispersion: 2.5 s½ CHIBIS-M E-field ch0 2012.10.24 06:25:01 UT+3 3:13 LT 317.1E 4.8N geographic mlat: 0.8° geomagnetic D0 dispersion: 14.5 s½

  8. recording fact #2: ionospheric whistlers often appear as whistler pairsat low geomagnetic latitudes; Chibis CH0 2013.09.05. 05:11:33 UT+3 25.04 W; 15.68 N; geom.lat: 2.75, L: 1.09

  9. 2nd trace of whistler pairs Hughes and Rice, JASTP, 59, 10, 1997 ● whistlers crossed the ionosphere fall in two distinct classes ● their dispersion values strongly depend on magnetic latitude of the satellite, (and on other factors, like LT too…) Δ day ○ night O+ whistlers

  10. #3 What theory/modeling tells?

  11. TASK: determination of most probable sferic entry point at the bottom of the ionosphere TOOLS: oblique UWB (real, time-domain waveform) code IRI2007 IGRF10 Waveform determined by four parameters: (average) plasma- and gyro-frequency, length of the path, and angle between k and B MODEL: deterministic field&medium, straight path between ionosphere ‘entry point’ and satellite

  12. fractional hop (O+) whistler in Chibis Bz – CH5 waveform data 2012.07.2123:23:39 UT+3 110.36 E; 1.11N, mlat: 6.74S

  13. sub-satellite o: 110.36 E; 1.11N geom.lat: 6.74S, L: 1.09, best fit *, field line footprint @100km □: 110.27E; 7.99S whistler dispersion: 2.7 s½ geographic latitude * geographic longitude

  14. best fit * sub-satellite point field line footprint * geographic latitude geographic longitude

  15. L=3.5 L=2.0 L=1.05 L=1.3 ● ionospheric propagation is necessarily oblique; ● path falls most probably in geomagnetic meridian plane; ● paths follows minimum propagation time condition; ● ionosphere entry point falls between sub-satellite and field line footprint positions ● at the magnetic equator the topology is symmetric → whistler pairs L=1.08 geomagnetic equator

  16. L=3.5 formation of low latitude whistler pairs, composed by a 1st trace (0+) and a 2nd with larger dispersion, due to longer, large-angle propagation. L=2.0 L=1.05 L=1.3 ‘forbidden’ source directions at local perpendicular L=1.08 geomagnetic equator ● at the magnetic equator the topology is symmetric

  17. sequence of low-latitude whistler pairs, CHIBIS-M, electric sensor (ch0) 2012.12.01. 18:51:03UT 93.48E;8.87N L=1.08

  18. 3D modeling of 2nd trace entry point of whistler pair □ * low latitude whistler pairs in Chibis E – CH0 waveforms 2013.09.05 05:11:33 UT+3 25.04 W; 15.68 N; geom.lat: 2.75, L: 1.09 geographic latitude ● Arc shaped, no clear best fit entry position – model limitation due to straight path geographic longitude

  19. sequence of whistler groups with same structure, with dispersion (16 s½) according to 2nd traces in pairs CHIBIS-M, electric sensor (CH0) 2013.09.09. 01:23:21 UT+3 9.33 E; 16.1N; mlat: 3.71; L=1.08

  20. satellite: 9.33 E; 16.1N; mlat: 3.71; L=1.08 ●

  21. D0: 5.4 s½, 6.5 s½ D0: 18.5 s½ D0: 31 s½ New observation: fractional-hop whistler TRIPLET, (or more..) 2012.12.0121:51:03 UT+3 93.48 E; 8.87 N; magnetic latitude: 0.07 - equator

  22. two consecutive fractional-hop whistler TRIPLETs 2012.09.19 00:50:31 UT +3 267.78 E; 23.24 N; mlat: 34

  23. two groups of whitler triplets in Chibis-M CH0 waveform record 2013.01.03. 02:49:50 UT+3 1.26 E; 5.47 N, mlat:-0.9

  24. two groups of whitler triplets in Chibis-M CH0 waveform record 2013.01.03. 02:49:50 UT+3 1.26 E; 5.47 N, mlat:-0.9

  25. two groups of whitler triplets in Chibis-M CH0 waveform record 2013.01.03. 02:49:50 UT+3 1.26 E; 5.47 N, mlat:-0.9

  26. two groups of whitler triplets in Chibis-M CH0 waveform record 2013.01.03. 02:49:50 UT+3 1.26 E; 5.47 N, mlat:-0.9

  27. two groups of whitler triplets in Chibis-M CH0 waveform record 2013.01.03. 02:49:50 UT+3 1.26 E; 5.47 N, mlat:-0.9

  28. vanellus / lapwing / чибис / bíbic Thank you for your attention! Благодарю вас за внимание!

  29. DEMETER VLF, 2004.08.26 03:33:02 UT two groups of whitler triplets in Chibis-M CH0 waveform record 2013.01.03. 02:49:50 UT+3 1.26 E; 5.47 N, mlat:-0.9

  30. DAYTIME PASS NIGHTTIME PASS

  31. Determination of most probable sferic entry point at the bottom of the ionosphere oblique UWB code IRI2007 IGRF10 Comparison of modeled, trans-ionospheric whistler traces to recorded one. -> geographic distribution of residuals (similarity values), and best fit entry point at residual minima; latitude dependent topology of prop. in the ionosphere

  32. L=1.08 equator very simplified cartoon for VLF wave propagation in the ionosphere ● waves reach the satellite along paths with minimum propagation time; this is represented by the path between the shortest, but high angle (vertical) and the longer, field aligned (longitudinal) directions

  33. L=1.08 equator intropical regions the magnetic field governed propagation topology is symmetric ● at equatorial and low magnetic latitudes occurrences of fractional-hop whistlers with two dispersion classes are expected

  34. A B C low-latitude whistler triplet pair, CHIBIS-M, electric field sensor (ch0) 2012.09.19. 00:50:31UT+3 267.79E;23.24N mlat=33.91 L=1.56 calculated D0 dispersions are A: 1.8 s½, B: 10.8 s½, C: 21.2 s½

More Related