1 / 38

Chapter 10: Phase Diagrams

Chapter 10: Phase Diagrams. Phase B. Phase A. Nickel atom. Copper atom. ISSUES TO ADDRESS. • When we combine two elements... what is the resulting equilibrium state?. • In particular, if we specify... -- the composition (e.g., wt% Cu - wt% Ni), and

amable
Download Presentation

Chapter 10: Phase Diagrams

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 10: Phase Diagrams Phase B Phase A Nickel atom Copper atom ISSUES TO ADDRESS... • When we combine two elements... what is the resulting equilibrium state? • In particular, if we specify... -- the composition (e.g., wt% Cu - wt% Ni), and -- the temperature (T) then... How many phases form? What is the composition of each phase? What is the amount of each phase?

  2. Sugar/Water Phase Diagram 10 0 Solubility L Limit 8 0 (liquid) 6 0 + L Temperature (°C) S (liquid solution 4 0 i.e., syrup) (solid 20 sugar) 0 20 40 60 80 100 C = Composition (wt% sugar) Sugar Water Phase Equilibria: Solubility Limit • Solution – solid, liquid, or gas solutions, single phase • Mixture – more than one phase Adapted from Fig. 10.1, Callister & Rethwisch 3e. • Solubility Limit: Maximum concentration for which only a single phase solution exists. Question: What is the solubility limit for sugar in water at 20°C? Answer: 65 wt% sugar. At 20°C, if C < 65 wt% sugar: syrup At 20°C,if C > 65 wt% sugar: syrup + sugar 65

  3. Components and Phases • Components: The elements or compounds which are present in the alloy (e.g., Al and Cu) • Phases: The physically and chemically distinct material regions that form (e.g., a and b). Aluminum- Copper Alloy b (lighter phase) a (darker phase) Adapted from chapter-opening photograph, Chapter 9, Callister, Materials Science & Engineering: An Introduction, 3e.

  4. B(100°C,C = 70) 1 phase D(100°C,C = 90) 2 phases 100 L 80 (liquid) + 60 L S Temperature (°C) ( liquid solution (solid 40 i.e., syrup) sugar) A(20°C,C = 70) 2 phases 20 0 0 20 40 60 70 80 100 C = Composition (wt% sugar) Effect of Temperature & Composition path A to B. • Altering T can change # of phases: • Altering C can change # of phases: path B to D. water- sugar system Adapted from Fig. 10.1, Callister & Rethwisch 3e.

  5. Criteria for Solid Solubility Simple system (e.g., Ni-Cu solution) • Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility. • Ni and Cu are totally soluble in one another for all proportions.

  6. T(°C) 1600 1500 L (liquid) 1400 a liquidus + 1300 L solidus a 1200 (FCC solid 1100 solution) 1000 wt% Ni 0 20 40 60 80 100 Phase Diagrams • Indicate phases as a function of T, C, and P. • For this course: - binary systems: just 2 components. - independent variables: T and C (P = 1 atm is almost always used). • 2 phases: Phase Diagram for Cu-Ni system L (liquid) a (FCC solid solution) • 3 different phase fields: L a L + a Adapted from Fig. 10.3(a), Callister & Rethwisch 3e. (Fig. 10.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).

  7. T(°C) 1600 1500 L (liquid) 1400 a liquidus + 1300 L solidus a 1200 (FCC solid 1100 solution) 1000 wt% Ni 0 20 40 60 80 100 Isomorphous Binary Phase Diagram • Phase diagram: Cu-Ni system. • System is: Cu-Ni phase diagram -- binary i.e., 2 components: Cu and Ni. -- isomorphous i.e., complete solubility of one component in another; a phase field extends from 0 to 100 wt% Ni. Adapted from Fig. 10.3(a), Callister & Rethwisch 3e. (Fig. 10.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).

  8. T(°C) 1600 1500 L (liquid) 1 phase: a B (1250°C, 35 wt% Ni): (1250°C,35) 1400 liquidus 2 phases: L + a a + 1300 solidus L B a (FCC solidsolution) 1200 A(1100°C,60) 1100 1000 wt% Ni 0 20 40 60 80 100 Phase Diagrams:Determination of phase(s) present • Rule 1: If we know T and Co, then we know: -- which phase(s) is (are) present. • Examples: A(1100°C, 60 wt% Ni): Adapted from Fig. 10.3(a), Callister & Rethwisch 3e. (Fig. 10.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).

  9. Cu-Ni system T(°C) A TA tie line liquidus L (liquid) At TA = 1320°C: 1300 a + L Only Liquid (L) present B TB solidus CL = C0 ( = 35 wt% Ni) a a At TD = 1190°C: + L (solid) 1200 D Only Solid (a) present TD C = C0 ( = 35 wt% Ni) 32 35 4 3 20 30 40 50 At TB = 1250°C: CL C0 C wt% Ni  Both and L present CL = C ( = 32 wt% Ni) liquidus C = C ( = 43 wt% Ni) solidus Phase Diagrams:Determination of phase compositions • Rule 2: If we know T and C0, then we can determine: -- the composition of each phase. • Examples: Consider C0 = 35 wt% Ni Adapted from Fig. 10.3(a), Callister & Rethwisch 3e. (Fig. 10.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).

  10. Phase Diagrams:Determination of phase weight fractions Cu-Ni system T(°C) A TA liquidus tie line L (liquid) At TA : Only Liquid (L) present 1300 a + L B WL= 1.00, Wa = 0 TB solidus  At TD : Only Solid ( ) present S R a a + WL = 0, W = 1.00 L a (solid) 1200 D TD  At TB : Both and L present 32 35 4 3 20 3 0 4 0 5 0 S = WL CL C0 Ca wt% Ni R + S R = = 0.27 Wa R + S • Rule 3: If we know T and C0, then can determine: -- the weight fraction of each phase. • Examples: Consider C0 = 35 wt% Ni Adapted from Fig. 10.3(a), Callister & Rethwisch 3e. (Fig. 10.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).

  11. T(°C) tie line liquidus L (liquid) 1300 a + M ML L B solidus T B a a + L (solid) 1200 R S S R 20 3 0 4 0 5 0 C0 CL C wt% Ni The Lever Rule • Tie line – connects the phases in equilibrium with each other – also sometimes called an isotherm • What fraction of each phase? Think of the tie line as a lever • (teeter-totter) Adapted from Fig. 10.3(b), Callister & Rethwisch 3e.

  12. Ex: Cooling of a Cu-Ni Alloy L: 35 wt% Ni B a: 46 wt% Ni 35 46 C 32 43 D L: 32 wt% Ni 24 36 a: 43 wt% Ni E L: 24 wt% Ni a: 36 wt% Ni • Phase diagram: Cu-Ni system. T(°C) L: 35wt%Ni L (liquid) Cu-Ni system a • Consider microstuctural changes that accompany the cooling of a C0 = 35 wt% Ni alloy 130 0 A + L a + 120 0 L a (solid) 110 0 35 20 3 0 4 0 5 0 wt% Ni C0 Adapted from Fig. 10.4, Callister & Rethwisch 3e.

  13. Cored vs Equilibrium Structures Last a to solidify: < 35 wt% Ni • Ca changes as we solidify. • Cu-Ni case: First a to solidify has Ca = 46 wt% Ni. Last a to solidify has Ca = 35 wt% Ni. • Slow rate of cooling: Equilibrium structure • Fast rate of cooling: Cored structure Uniform Ca: First a to solidify: 35 wt% Ni 46 wt% Ni

  14. 60 %EL for pure Cu 400 %EL for 50 pure Ni TS for Elongation (%EL) 40 pure Ni Tensile Strength (MPa) 300 30 TS for pure Cu 200 20 0 20 40 60 80 100 0 20 40 60 80 100 Cu Ni Cu Ni Composition, wt% Ni Composition, wt% Ni Mechanical Properties:Cu-Ni System • Effect of solid solution strengthening on: -- Tensile strength (TS) -- Ductility (%EL) Adapted from Fig. 10.6(a), Callister & Rethwisch 3e. Adapted from Fig. 10.6(b), Callister & Rethwisch 3e.

  15. Hume Rothery’s Rules for Solid Solution: • Radii of atoms must be within 15% of each other. • Each element forms the same crystal structure. • Each element must have the same valence. • Each element forms the same crystal structure.

  16. Binary-Eutectic Systems • Eutectic reaction L(CE) (CE) + (CE) cooling heating has a special composition with a min. melting T. 2 components Cu-Ag system T(°C) Ex.: Cu-Ag system 1200 • 3 single phase regions L (liquid) (L, a, b) 1000 a L + a • Limited solubility: b L + 779°C b 800 TE a: mostly Cu 8.0 91.2 71.9 b: mostly Ag 600 • TE : No liquid below TE a + b 400 • CE : Composition at temperature TE 200 80 100 0 20 40 60 CE C , wt% Ag Adapted from Fig. 10.7, Callister & Rethwisch 3e.

  17. EX 1: Pb-Sn Eutectic System T(°C) 300 L (liquid) a L + a b b L + 200 183°C 18.3 61.9 97.8 C- C0 150 S R S = W =  R+S C- C 100 a + b 99 - 40 59 = = = 0.67 99 - 11 88 100 0 11 20 60 80 99 40 C0- C R W C C C0 = =  C, wt% Sn C - C R+S 40 - 11 29 = = 0.33 = 99 - 11 88 • For a 40 wt% Sn-60 wt% Pb alloy at 150°C, determine: -- the phases present Pb-Sn system Answer: a + b -- the phase compositions Answer: Ca = 11 wt% Sn Cb = 99 wt% Sn -- the relative amount of each phase Answer: Adapted from Fig. 10.8, Callister & Rethwisch 3e.

  18. EX 2: Pb-Sn Eutectic System T(°C) CL - C0 46 - 40 = W = a CL - C 46 - 17 300 L (liquid) 6 a L + = = 0.21 29 220 a b b R L + S 200 183°C 100 a + b 100 17 46 0 20 40 60 80 C CL C0 C, wt% Sn C0 - C 23 = WL = = 0.79 CL - C 29 • For a 40 wt% Sn-60 wt% Pb alloy at 220°C, determine: -- the phases present: Pb-Sn system Answer: a + L -- the phase compositions Answer: Ca = 17 wt% Sn CL = 46 wt% Sn -- the relative amount of each phase Answer: Adapted from Fig. 10.8, Callister & Rethwisch 3e.

  19. Microstructural Developments in Eutectic Systems I T(°C) L: C0wt% Sn 400 L a L 300 L a + a 200 (Pb-Sn a: C0wt% Sn TE System) 100 b + a 0 10 20 30 C , wt% Sn C0 2 (room T solubility limit) • For alloys for which C0 < 2 wt% Sn • Result: at room temperature -- polycrystalline with grains of a phase having composition C0 Adapted from Fig. 10.11, Callister & Rethwisch 3e.

  20. Microstructural Developments in Eutectic Systems II L: C0 wt% Sn T(°C) 400 L L 300 a L + a a: C0wt% Sn a 200 TE a b 100 b + a Pb-Sn system 0 10 20 30 C , wt% Sn C0 2 (sol. limit at T ) 18.3 room (sol. limit at TE) • For alloys for which 2 wt% Sn < C0 < 18.3 wt% Sn • Result: at temperatures in a + b range -- polycrystalline with agrains and small b-phase particles Adapted from Fig. 10.12, Callister & Rethwisch 3e.

  21. Microstructural Developments in Eutectic Systems III Micrograph of Pb-Sn T(°C) eutectic L: C0 wt% Sn microstructure 300 L Pb-Sn system a L + a b L 200 183°C TE 100 160m a : 97.8 wt% Sn Adapted from Fig. 10.14, Callister & Rethwisch 3e. : 18.3 wt%Sn 0 20 40 60 80 100 97.8 18.3 CE C, wt% Sn 61.9 • For alloy of composition C0 = CE • Result: Eutectic microstructure (lamellar structure) -- alternating layers (lamellae) of a and b phases. Adapted from Fig. 10.13, Callister & Rethwisch 3e.

  22. Lamellar Eutectic Structure Adapted from Figs. 10.14 & 10.15, Callister & Rethwisch 3e.

  23. Microstructural Developments in Eutectic Systems IV • Just above TE : L T(°C) L: C0 wt% Sn  Ca = 18.3 wt% Sn L  CL = 61.9 wt% Sn 300 L Pb-Sn system S Wa  L + = 0.50 = R + S a b WL = (1- W ) = 0.50  L + a R S 200 TE S R • Just below TE : C = 18.3 wt% Sn    100 + a primary C = 97.8 wt% Sn  a eutectic S b eutectic W  = 0.73 = R + S 0 20 40 60 80 100 W = 0.27  18.3 61.9 97.8 Adapted from Fig. 10.16, Callister & Rethwisch 3e. C, wt% Sn • For alloys for which 18.3 wt% Sn < C0 < 61.9 wt% Sn • Result:a phase particles and a eutectic microconstituent

  24. Hypoeutectic & Hypereutectic hypoeutectic: C0 = 50 wt% Sn hypereutectic: (illustration only) (Figs. 10.14 and 10.17 from Metals Handbook, 9th ed., Vol. 9, Metallography and Microstructures, American Society for Metals, Materials Park, OH, 1985.) a b a b a a b b a b a b 175 mm Adapted from Fig. 10.17, Callister & Rethwisch 3e. Adapted from Fig. 10.17, Callister & Rethwisch 3e. (Illustration only) 300 L T(°C) Adapted from Fig. 10.8, Callister & Rethwisch 3e. (Fig. 10.8 adapted from Binary Phase Diagrams, 2nd ed., Vol. 3, T.B. Massalski (Editor-in-Chief), ASM International, Materials Park, OH, 1990.) a L + a b b L + (Pb-Sn 200 TE System) a + b 100 C, wt% Sn 0 20 40 60 80 100 eutectic 61.9 eutectic: C0=61.9wt% Sn 160 mm eutectic micro-constituent Adapted from Fig. 10.14, Callister & Rethwisch 3e.

  25. Intermetallic Compounds Adapted from Fig. 10.20, Callister & Rethwisch 3e. Mg2Pb Note: intermetallic compound exists as a line on the diagram - not an area - because of stoichiometry (i.e. composition of a compound is a fixed value).

  26. cool cool cool heat heat heat • Eutectoid – one solid phase transforms to two other solid phases • S2S1+S3 •  + Fe3C (For Fe-C, 727C, 0.76 wt% C) intermetallic compound - cementite • Peritectic - liquid and one solid phase transform to a second solid phase • S1 + LS2 •  + L (For Fe-C, 1493°C, 0.16 wt% C) Eutectic, Eutectoid, & Peritectic • Eutectic - liquid transforms to two solid phases L +  (For Pb-Sn, 183C, 61.9 wt% Sn)

  27. Peritectic transformation  + L Eutectoid transformation  +  Eutectoid & Peritectic Cu-Zn Phase diagram Adapted from Fig. 10.21, Callister & Rethwisch 3e.

  28. Ceramic Phase Diagrams MgO-Al2O3 diagram:  Adapted from Fig. 10.24, Callister & Rethwisch 3e.

  29. T(°C) 1600 d - Eutectic (A): L 1400 Þ g + L Fe3C g +L g A 1200 1148°C - Eutectoid (B): (austenite) g Þ a + Fe3C g g 1000 g +Fe3C g g a Fe3C (cementite) + 800 B g a 727°C = T eutectoid 600 a +Fe3C 400 0 1 2 3 4 5 6 6.7 4.30 0.76 C, wt% C (Fe) 120 mm Result: Pearlite = Fe3C (cementite-hard) alternating layers of a (ferrite-soft) a and Fe3C phases (Adapted from Fig. 10.31, Callister & Rethwisch 3e.) Adapted from Fig. 10.28,Callister & Rethwisch 3e. Iron-Carbon (Fe-C) Phase Diagram • 2 important points L+Fe3C

  30. T(°C) 1600 d L 1400 (Fe-C g +L g g g System) 1200 L+Fe3C 1148°C (austenite) g g g 1000 g g +Fe3C g g Fe3C (cementite) a g g 800 727°C a a a g g 600 a +Fe3C 400 0 1 2 3 4 5 6 6.7 a C, wt% C (Fe) C0 0.76 pearlite Hypoeutectoid 100 mm steel pearlite proeutectoid ferrite Adapted from Fig. 10.34, Callister & Rethwisch 3e. Hypoeutectoid Steel Adapted from Figs. 10.28 and 10.33,Callister & Rethwisch 3e. (Fig. 10.28 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)

  31. T(°C) 1600 d L 1400 (Fe-C g +L g System) 1200 L+Fe3C 1148°C (austenite) 1000 g +Fe3C Wa’= S/(R+S) Wa= s/(r+s) Fe3C (cementite) a r s g g 800 Wg=(1 - Wa) W=(1 – Wa’) 727°C a a a g g R S 600 a +Fe3C 400 0 1 2 3 4 5 6 6.7 a C, wt% C (Fe) C0 0.76 Wpearlite=Wg pearlite Hypoeutectoid 100 mm steel Fe3C pearlite proeutectoid ferrite Adapted from Fig. 10.34, Callister & Rethwisch 3e. Hypoeutectoid Steel Adapted from Figs. 10.28 and 10.33,Callister & Rethwisch 3e. (Fig. 10.28 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)

  32. T(°C) 1600 d L 1400 (Fe-C g +L g g g System) 1200 L+Fe3C 1148°C g g (austenite) g 1000 g g +Fe3C g g Fe3C (cementite) Fe3C 800 g g a g g 600 a +Fe3C 400 0 1 2 3 4 5 6 6.7 C, wt%C (Fe) pearlite Hypereutectoid 60mm steel pearlite proeutectoid Fe3C Adapted from Fig. 10.37, Callister & Rethwisch 3e. Hypereutectoid Steel Adapted from Figs. 10.28 and 10.36,Callister & Rethwisch 3e. (Fig. 10.28 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.) C0 0.76

  33. T(°C) 1600 d L 1400 (Fe-C g +L g Fe3C System) 1200 L+Fe3C 1148°C (austenite) 1000 g +Fe3C Wg=x/(v + x) Fe3C (cementite) x v 800 g W=(1-Wg) g Fe3C a g g V X 600 a +Fe3C 400 0 1 2 3 4 5 6 6.7 C, wt%C (Fe) pearlite Wpearlite=Wg Wa= X/(V+X) Hypereutectoid 60mm W=(1 - Wa) steel Fe3C’ pearlite proeutectoid Fe3C Adapted from Fig. 10.37, Callister & Rethwisch 3e. Hypereutectoid Steel Adapted from Figs. 10.28 and 10.36,Callister & Rethwisch 3e. (Fig. 10.28 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.) C0 0.76

  34. Example Problem For a 99.6 wt% Fe-0.40 wt% C steel at a temperature just below the eutectoid, determine the following: • The compositions of Fe3C and ferrite (). • The amount of cementite (in grams) that forms in 100 g of steel. • The amounts of pearlite and proeutectoid ferrite () in the 100 g.

  35. 1600 d L 1400 T(°C) g +L g 1200 L+Fe3C 1148°C (austenite) 1000 g +Fe3C Fe3C (cementite) 800 727°C Amount of Fe3C in 100 g = (100 g)WFe3C = (100 g)(0.057) = 5.7 g R S 600 a +Fe3C 400 0 1 2 3 4 5 6 6.7 C0 C C, wt% C CFe C 3 Solution to Example Problem a) Using the RS tie line just below the eutectoid Ca = 0.022 wt% CCFe3C = 6.70 wt% C • Using the lever rule with the tie line shown

  36. 1600 d L 1400 T(°C) g +L g 1200 L+Fe3C 1148°C (austenite) 1000 g +Fe3C Fe3C (cementite) 800 727°C V X Amount of pearlite in 100 g = (100 g)Wpearlite = (100 g)(0.512) = 51.2 g 600 a +Fe3C 400 C0 0 1 2 3 4 5 6 6.7 C C C, wt% C Solution to Example Problem (cont) c) Using the VX tie line just above the eutectoid and realizing that C0 = 0.40 wt% CCa = 0.022 wt% CCpearlite = C = 0.76 wt% C

  37. Alloying with Other Elements • Teutectoid changes: • Ceutectoid changes: (wt% C) Ti Si Mo (°C) Ni W Cr Cr eutectoid Eutectoid Si Mn W Mn Ti Mo C T Ni wt. % of alloying elements wt. % of alloying elements Adapted from Fig. 10.38,Callister & Rethwisch 3e. (Fig. 10.38 from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.) Adapted from Fig. 10.39,Callister & Rethwisch 3e. (Fig. 10.39 from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.)

  38. Summary • Phase diagrams are useful tools to determine: -- the number and types of phases present, -- the composition of each phase, -- and the weight fraction of each phase given the temperature and composition of the system. • The microstructure of an alloy depends on -- its composition, and -- whether or not cooling rate allows for maintenance of equilibrium. • Important phase diagram phase transformations include eutectic, eutectoid, and peritectic.

More Related