1 / 59

NMR Basic Principle

NMR Basic Principle. 2009. 7. 30. 노 정 래 군산대학교. Magnetization in the magnetic field Magnetization under RF pulse Detection of Magnetization Digitization of FID Fourier Transformation Experiment Setup Chemical shift & Spin coupling constant. Energy E = h u h is Planck constant

amable
Download Presentation

NMR Basic Principle

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NMR BasicPrinciple 2009. 7. 30 노 정 래 군산대학교

  2. Magnetization in the magnetic field • Magnetization under RF pulse • Detection of Magnetization • Digitization of FID • Fourier Transformation • Experiment Setup • Chemical shift & Spin coupling constant

  3. Energy E = hu h is Planck constant u frequency - spin, I - Positive charge - Magnetogyric ratio, g nucleus Magnetic moment, m

  4. If magnetic field, Bo is applied to the direction of Z, E = - mz Bo = g Iz Bo I = 1 I = 1/2 Z Iz = +1 Iz = +1/2 Iz = 0 Iz = -1/2 Iz = -1/2

  5. Magnetic moments in the magnetic field, Bo (one-spin system) w0: Larmor Frequency I=1/2 w0=gBo Bo m E = gBoh / 2p

  6. Magnetic moments in the magnetic field, Bo Mz = Mo Bo ≡ Mz Mx,y ≡

  7. The behavior of magnetic moments in the magnetic field, Bo Bo In the Magnetic field, Bo Mo w0=gBo - Magnetization, Mo Mo = Nh2g2Bo / 4pkT - Precession of Mo at frequency, wo about the axis of Bo Equilibrium

  8. w0=gBo u0 = gBo/2p gH = 2.675  108 T-1 rad s-1 w0=gBo

  9. Magnetization under RF pulse First NMR Spectra on Water 1H NMR spectra of water Bloch, F.; Hansen, W. W.; Packard, M. The nuclear induction experiment. Physical Review (1946), 70 474-85.

  10. Coherence Bo x x y y x x y y partially correlated spins (Mx,y) coherence

  11. RF Energy + coherence Spin inversion Relaxation Equilibrium Non equilibrium

  12. rotating frame (회전좌표계) z Bo z Bo Mo Mo w 0 w 0 w y y | w - w 0| x x w 0

  13. z z Bo- w/g Bo =0 Mo Mo  w 0- w w = w 0 w  w 0 y y x x Off-resonance On-resonance

  14. RF wave (에너지) 2B1sin(wtp+ a) B1 (w) x x 2B1 B1 (w)

  15. Magnetization in the RF field (phase a=0) 2B1cos(wtp+ a) On-resonance z z w1=gB1 Bo = 0 q Mo q=w1tp w = w 0 y y My B1 x B1 x phase = x effect of B1 at w = w 0 (on-resonance) B1 (wo)

  16. Magnetization in the RF field (phase a=0) Off-resonance z weff = gBeff Bo - w/g Mo Mo q Bo- w/g w  w 0  w 0- w Beff My B1 y B1 x effect of B1 at w  w 0 (off-resonance)

  17. RF pulse description B1 pulse B1 Beff >> Bo – w/g tp 2B1cos(wt+ a) w w  Dw w +

  18. z 90x Mo y z x Mo z 180x,y y y x z x Mo Mo y x 90y

  19. 90x 180y t t Spin-echo 4 1 2 3 5 z z z Mo y y y ( w 0- w) t Mo Mo x x x 3 2 1 z z 1 Mo ( w 0- w) t Mo y y x x 5 4

  20. Relaxation Non equilibrium Equilibrium( Mx,y= 0, Mz = M0) 1. Longitudinal (spin-lattice) relaxation : Recovery to Mo Mo t > 5 T1 2. Transverse (spin-spin) relaxation : recovery to Mx,y=0 Mx,y 0 t

  21. Magnetization for one spin system 1. w = w 0 (on-resonace) 90x Signal detection 2. wo - w= 50 Hz w w RF FID (free induction decay) w o P PSD w o 3. wo - w= 100 Hz Coil (induction current)

  22. Summary z 90x z Mo w o y (Off-resonace) w > wo w x y x

  23. Fourier Transformation (FT) real imaginary real imaginary w w D(w) A(w)

  24. Fourier Transformation (FT) Real part 1. w = w 0 Reference frequency Offset frequency w 2. w - w0 = 50 Hz w 0 -w 0 3. w - w0 = 100 Hz w 0 -w 0

  25. FT real imaginary W w W -W 0 RF f W -W 0 y w o • = wo-w • wo > w PSD P x W W -W 0 W -W 0 + + W Quadrature Detection W -W 0

  26. Scan 1 (nt) Scan 2 Pulse width (pw) Pulse power (tpwr) Relaxation delay (d1) Acquisition time (at) Offset frequency (tof) Spectral width (sw)

  27. Digitization of FID PSD ADC = Analog to Digital Converter

  28. Digitization of FID Nyquist frequency 주파수 f인 주기 함수를 data point로 나타내기 위한 최소 주파수, 2f 따라서 한 주기 당 적어도 data point를 적어도 2개 이상 얻어야 한다.

  29. 160ms Real part (COS) Imaginary part (SIN) Real + imaginary data points at simultaneous time (Varian) In Quadrature detection np: 총 data point sw: spectral width

  30. Sampling rate & alias(folding) Nyquist Theorem에위배

  31. 주파수가 1600Hz인 cos함수 주파수가 400Hz인 cos함수(alias 함수) Nyquist 주파수 :1000Hz Folding (aliased)

  32. Window function FT

  33. Window Functions S/N 61.8 72.0 30.6 122.0

  34. Experiment Setup probe

  35. Locking - 시간에 따른 자장의 변화를 보정 - NMR 용매로 사용하는 deuterium 핵을 이용 - acetone-d6, methanol-d4, chloroform-d, DMSO

  36. Shimming • NMR시료에 균일한 자장을 만드는 작업 • x,y방향은 spin, z 방향은 shim coil의 전류량으로 조절 • - shim은 NMR 시료 높이에 따라 의존 Shimming method • FID를 이용 • 한 spin핵에 대한 FID이 지수함수로 감소되도록 shim값을 변화 • 2. Lock level를 이용 • lock level이 최대가 되도록 shim값을 변화 • 3. Field gradient를 이용(Gradient shimming) • field map에 회귀분석적으로 shim값 조정 스펙트럼에서 최상의 해상도와 감도를 위해서는 shim조절이 필수

  37. 정상 Z2 감소 후 Z1재 조정 Z4감소 후 Z1,Z2 재 조정 Z3감소 후 Z1,Z2 재 조정 Z5감소 후 Z1,Z2 재 조정 X, Y, XZ, YZ XY, X2-Y2 Z3증가 Z4감소 후 Z1,Z2 재 조정

  38. Observer 90o pulse calibration 1. Spin 2. Temperature setting 3. Probe tune (dependence on solvent and temperature) 4. Lock & shim 5. Adjust reference frequency to the singlet line 6. Array pulse width tp qX 1H ( 13C ) > 5 T1 (1H ) BB q

  39. Decoupler90o pulse calibration with IS spin system(e.g. CH) 1. Decoupler 1H 90o calibration 90X 180X J 1/2J 1/2J S (13C) {1H} 13C qX I (1H) BB BB q =90o q DEPT, Hetcor, INADEQUATE, etc

  40. 2. Decoupler 13C 90o calibration J 90X 180X {13C} 1H 1/2J 1/2J I (1H) qX S (13C) 1H-12C q q =90o 1H-13C HMQC, HMBC, etc

  41. 1H spectrum of 13CH3I 1H-12C Observer decoupler on-resonance setting Temperature setting Tunning -minimize 1H-13C 1H-13C 151 Hz 15N-benzamide 90Hz

  42. Decoupler field strength(B2) calibration 13C 90X B2 S (13C) Jr I (1H) low-power CW mode B2 JCH 1H 90X I (1H)  S (13C) low-power CW mode wr w2

  43. Chemical shift & spin coupling constants Chemical Shift Shielding (Screening) factor, s 1H 1H < sa sb frequency na = g Bo(1-sa)/2p > nb = g Bo(1-sb)/2p CH2 CH3 HOCH2CH3 CDCl3 220 200 180 160 140 120 100 80 60 40 20 0 CH3 CH2 OH 10 9 8 7 6 5 4 3 2 1 0 ppm 125 600 500 400 300 200 100 MHz

  44. 1H and 13C Chemical shifts 1H (1.5~1.6) (1.15~1.16) (~0.75) 12 11 10 9 8 7 6 5 4 3 2 1 0 TMS ppm 13C (30~42) (22~35) (13~23) 220 200 180 160 140 120 100 80 60 40 20 0 TMS ppm

  45. some featured 13C chemical shifts alkane d= -2.3 + 9.1na + 9.4nb -2.5 ng 16.1 16.3 24.6 23.3 -2.3 6.5 alkene 133.4 141.8 127.2 73.5 115.9 111.3 212.6 170.4 123.5 24.2 19.9 alkyne arene 136.0 127.7 110.4 123.5 125.6 143.6 149.9 71.9 128.5 133.3 24.1 34.1 28.2 16.5 g-gauche effect

  46. Symmetry and Topicity ■ Homotopicity - indistinguishable atoms or groups by symmetry ■Enantiotopicity- atoms or groups having the mirror image in a molecule ■Diastereotopicity - atoms or groups not producing the mirror image

More Related