1 / 25

C. Beskidt , W. de Boer, D. Kazakov , F. Ratnikov

LHC and direct DM searches. C. Beskidt , W. de Boer, D. Kazakov , F. Ratnikov. Outline CMSSM Constraints: LHC, WMAP, XENON100, Electroweak, heavy flavour Fitting problems: highly correlated parameters -> multistep fitting technique

amal
Download Presentation

C. Beskidt , W. de Boer, D. Kazakov , F. Ratnikov

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LHC and direct DM searches C. Beskidt, W. de Boer, D. Kazakov, F. Ratnikov Outline CMSSM Constraints: LHC, WMAP, XENON100, Electroweak, heavy flavour Fitting problems:highly correlated parameters -> multistep fitting technique Results (Beskidt, WdB, Kazakov,Ratnikov, arxiv.org/1202.3366)

  2. Constraints considered Variables calculated with MicrOMEGAs2.4.1 Minuit for minimization • LHC limits on pseudoscalarHiggsandsquarksandgluinos.

  3. CMSSM – pre-LHC constraints Higgs Mass mhmh > 114,4 GeV Muon g-2 b→sγBRexp(b→sγ) = (3,55 ± 0,24)·10-4 Bs→μμBRexp(Bs→μμ) < 1,1·10-8 B→τνBRexp(B→τν) = (1,68 ± 0,31)·10-4 Relic Density Ωh2Ωh2 = 0,1131 ± 0,0034 CMSSM: 4 Parameter m0, m1/2, A0, tanβandsignofμ Fitting problem: STRONG correlationsbetween 3 of 4 freeparameters Solution: multistep fitting technique, i.e. fit parameterswithstrongestcorrelation (A0, tanβ) firstforevery pair ofm0, m1/2

  4. Examples of high correlation χ2 for Bs →μμ and Ωh2 Both strongly dependent on tanβ Bs →μμ Ωh2 Origin of correlation: For given m0 only very specific values of tan For given tan only very specific values of A0 focus point region mA exchange co-annihilation region

  5. Excluded regions (95% C.L.) pre-LHC WHITE = ALLOWED

  6. Why CMSSM? • CMSSM provides UNIFICATION ofgaugecouplings • CMSSM provides UNIFICATION of Yukawa couplings • CMSSM assumes UNIFICATION ofgauginomasses m1/2 • Mgluino=2.7 m1/2, MWIMP=0.4 m1/2 • CMSSM predicts EWSB with114 < Mhiggs< 130 GeV • LHC: 116<Mhiggs<131 GeV • CMSSM providesWIMP Miracle: • annihilation x-section a fewpb-> correctrelicdensity • scatteringcrosssection < 10-8pb • consistentwith xenon100

  7. Why CMSSM? LHC: 116<Mh<131 GeV • CMSSM provides UNIFICATION ofgaugecouplings • CMSSM provides UNIFICATION of Yukawa couplings • CMSSM assumes UNIFICATION ofgauginomasses m1/2 • Mgluino=2.7 m1/2, MWIMP=0.4 m1/2 WIMP largely Bino DM may be supersymmetric partner of CMB U. Amaldi, WdB, H. Fürstenau, PLB, 1991, wdb. C, Sander, PLB 2004, hep-ph/0307049 • CMSSM predicts EWSB with114 < Mhiggs< 130 GeV • LHC: 116<Mhiggs<131 GeV Yukawa coupling Unification wdb et al, PLB 2001, arXiv:hep-ph/0106311 • CMSSM providesWIMP Miracle: • annihilation x-section a fewpb-> correctrelicdensity • scatteringcrosssection < 10-8pb • consistentwith xenon100

  8. NO constraintfromRelicdensityalone! Relic density Ωh2inversely proportional to annihilation x-section σ Main annihilation diagram via pseudo-scalar Higgs A Large enoughannih. Cross section nearresonance, i.e . 2mmA Dial tanβforcorrectmA→tanβ≈ 50 in mostofparameterrange

  9. With LHC: relicdensitybecomesconstraint tan  50 Koannihilation mAm1/2 Beskidt, wdb, Kazakov, arXiv:1008.2150

  10. tanβ≈ 50 mA cross sections  tan2 mA > 400 GeV for tan50 Beskidt, dB et al.1008.2150, PLB 2011

  11. LHC directsearches 95% CL exclusionbyCMS + ATLAS followstot0.1-0.2 pb 2=tot2/σeff2 , Δ2= 2 –2min= 5,99 for 95% C.L:

  12. LHC directsearches Expectedsensitivity at 14 TeV: almost 2x Excluded: (95% C.L:

  13. Cross sectionlimits WIMP-Nucleonscattering Scattering rate R: fromrotationcurve  0.3-1.3 GeV/cm3 X-sectiondominatedbyHiggsexchange   Quark massandHiggsinocomp. ofNeutralino 

  14. Can local DM densitybeas large as 1.3 GeV/cm3? WdB, Weber, arXiv:1011.6323 = =1.3 GeV/cm3 =0.3 GeV/cm3 Change ofslopepreciselymeasuredby VLBI measurements Can ONLY beexplainedbylocalringlikesubstructure in DM, e.g. fromdisruptionofCanis Major satellite. Supportedbymagic ring ofstarsand gas flaring

  15. Kalberla, et al-. arXiv:0704.3925 no ring with outer ring Evidenceforlocal DM Substructure FWHM gas layer [kpc] Sun CM Sgt R [kpc] Tidal force  ΔFG  1/r3 Canis Major disruption suggested by magic ring of stars (SDSS) Gas flaring needs outer ring with mass of 2.1010M☉! From David Law, Caltech

  16. Large uncertaintyfromvirtualstrangequarks Effectivecouplings Considerconservativelymuchlower s-quark densityfromlatticecalculations (anddistrustN scattering in non-perturbativeregime) Also consideredlowestpossiblelocal DM densityof 0.3 GeV/cm3

  17. Higgsinocomp. Large for large m0 EWSB requires smalland large N13 for large m0 Higgsexchangebecomes large, ifHiggsinocomponent of WIMP becomes large Large x-section Easy toexclude

  18. Combinedexclusionplot

  19. Influencefrom g-2 Preferredregionfrom g-2 excludedlargelyby LHC Without g-2 nopreferredregionaboveexclusion (red), i.e.  flat, but ithelpsexclusionat large m0

  20. Summary (arxiv1202.3366) Sensitive region The mainplayers LHC direct searches: Light SUSY masses LHC Higgs searches +h2: Inter- Mediate SUSY masses Direct DM searches +h2: Heavy SUSY masses Combination: in CMSSM WIMP >160 GeV, gluino > 1 TeV

  21. Backup

  22. Best-Fit Point Point 1: electroweak+ cosmologicalconstraints Point 2: electroweak+ cosmological+ LHC (directsearchesandmA+Ωh2) + DDMS

  23. Comparisontoothergroups Strong correlationbetweenA0 und tanβ Buchmueller et al. arXiv: 1110.3568

  24. Theoretical errors can be treated as nuisance parameters and integrated over in the probability distribution (=convolution for symm. distr.) If errors Gaussian, this corresponds to adding the experimental and theoretical errors in quadrature Assume σtheo ~ σexp (only then important) How to treat theoretical errors? Convolution of Gaussian + “flat top Gaussian” Convolution of 2 Gaussians Adding errors linearly more conservative approach for theory errors.

  25. EWSB and PseudoscalarHiggs Mass mA Higgs potential: CP-even lightest Higgs <130 GeV CP-even neutral heavy Higgs H CP-odd neutral Higgs A CP-even charged HiggsesH mA2=m12+m22becomes ALWAYS small at large tan m1mb tan EWSB wenn m2 <0, possible by rad. corr. AND 140 < mt < 200 GeV (pred. from SUSY, Inoue et al, 1982, wdb et al., hep-ph/9805378) At large m0:  shouldbecomesmall in order toreach m2<0 beforemZ m2mt

More Related