250 likes | 363 Views
LHC and direct DM searches. C. Beskidt , W. de Boer, D. Kazakov , F. Ratnikov. Outline CMSSM Constraints: LHC, WMAP, XENON100, Electroweak, heavy flavour Fitting problems: highly correlated parameters -> multistep fitting technique
E N D
LHC and direct DM searches C. Beskidt, W. de Boer, D. Kazakov, F. Ratnikov Outline CMSSM Constraints: LHC, WMAP, XENON100, Electroweak, heavy flavour Fitting problems:highly correlated parameters -> multistep fitting technique Results (Beskidt, WdB, Kazakov,Ratnikov, arxiv.org/1202.3366)
Constraints considered Variables calculated with MicrOMEGAs2.4.1 Minuit for minimization • LHC limits on pseudoscalarHiggsandsquarksandgluinos.
CMSSM – pre-LHC constraints Higgs Mass mhmh > 114,4 GeV Muon g-2 b→sγBRexp(b→sγ) = (3,55 ± 0,24)·10-4 Bs→μμBRexp(Bs→μμ) < 1,1·10-8 B→τνBRexp(B→τν) = (1,68 ± 0,31)·10-4 Relic Density Ωh2Ωh2 = 0,1131 ± 0,0034 CMSSM: 4 Parameter m0, m1/2, A0, tanβandsignofμ Fitting problem: STRONG correlationsbetween 3 of 4 freeparameters Solution: multistep fitting technique, i.e. fit parameterswithstrongestcorrelation (A0, tanβ) firstforevery pair ofm0, m1/2
Examples of high correlation χ2 for Bs →μμ and Ωh2 Both strongly dependent on tanβ Bs →μμ Ωh2 Origin of correlation: For given m0 only very specific values of tan For given tan only very specific values of A0 focus point region mA exchange co-annihilation region
Excluded regions (95% C.L.) pre-LHC WHITE = ALLOWED
Why CMSSM? • CMSSM provides UNIFICATION ofgaugecouplings • CMSSM provides UNIFICATION of Yukawa couplings • CMSSM assumes UNIFICATION ofgauginomasses m1/2 • Mgluino=2.7 m1/2, MWIMP=0.4 m1/2 • CMSSM predicts EWSB with114 < Mhiggs< 130 GeV • LHC: 116<Mhiggs<131 GeV • CMSSM providesWIMP Miracle: • annihilation x-section a fewpb-> correctrelicdensity • scatteringcrosssection < 10-8pb • consistentwith xenon100
Why CMSSM? LHC: 116<Mh<131 GeV • CMSSM provides UNIFICATION ofgaugecouplings • CMSSM provides UNIFICATION of Yukawa couplings • CMSSM assumes UNIFICATION ofgauginomasses m1/2 • Mgluino=2.7 m1/2, MWIMP=0.4 m1/2 WIMP largely Bino DM may be supersymmetric partner of CMB U. Amaldi, WdB, H. Fürstenau, PLB, 1991, wdb. C, Sander, PLB 2004, hep-ph/0307049 • CMSSM predicts EWSB with114 < Mhiggs< 130 GeV • LHC: 116<Mhiggs<131 GeV Yukawa coupling Unification wdb et al, PLB 2001, arXiv:hep-ph/0106311 • CMSSM providesWIMP Miracle: • annihilation x-section a fewpb-> correctrelicdensity • scatteringcrosssection < 10-8pb • consistentwith xenon100
NO constraintfromRelicdensityalone! Relic density Ωh2inversely proportional to annihilation x-section σ Main annihilation diagram via pseudo-scalar Higgs A Large enoughannih. Cross section nearresonance, i.e . 2mmA Dial tanβforcorrectmA→tanβ≈ 50 in mostofparameterrange
With LHC: relicdensitybecomesconstraint tan 50 Koannihilation mAm1/2 Beskidt, wdb, Kazakov, arXiv:1008.2150
tanβ≈ 50 mA cross sections tan2 mA > 400 GeV for tan50 Beskidt, dB et al.1008.2150, PLB 2011
LHC directsearches 95% CL exclusionbyCMS + ATLAS followstot0.1-0.2 pb 2=tot2/σeff2 , Δ2= 2 –2min= 5,99 for 95% C.L:
LHC directsearches Expectedsensitivity at 14 TeV: almost 2x Excluded: (95% C.L:
Cross sectionlimits WIMP-Nucleonscattering Scattering rate R: fromrotationcurve 0.3-1.3 GeV/cm3 X-sectiondominatedbyHiggsexchange Quark massandHiggsinocomp. ofNeutralino
Can local DM densitybeas large as 1.3 GeV/cm3? WdB, Weber, arXiv:1011.6323 = =1.3 GeV/cm3 =0.3 GeV/cm3 Change ofslopepreciselymeasuredby VLBI measurements Can ONLY beexplainedbylocalringlikesubstructure in DM, e.g. fromdisruptionofCanis Major satellite. Supportedbymagic ring ofstarsand gas flaring
Kalberla, et al-. arXiv:0704.3925 no ring with outer ring Evidenceforlocal DM Substructure FWHM gas layer [kpc] Sun CM Sgt R [kpc] Tidal force ΔFG 1/r3 Canis Major disruption suggested by magic ring of stars (SDSS) Gas flaring needs outer ring with mass of 2.1010M☉! From David Law, Caltech
Large uncertaintyfromvirtualstrangequarks Effectivecouplings Considerconservativelymuchlower s-quark densityfromlatticecalculations (anddistrustN scattering in non-perturbativeregime) Also consideredlowestpossiblelocal DM densityof 0.3 GeV/cm3
Higgsinocomp. Large for large m0 EWSB requires smalland large N13 for large m0 Higgsexchangebecomes large, ifHiggsinocomponent of WIMP becomes large Large x-section Easy toexclude
Influencefrom g-2 Preferredregionfrom g-2 excludedlargelyby LHC Without g-2 nopreferredregionaboveexclusion (red), i.e. flat, but ithelpsexclusionat large m0
Summary (arxiv1202.3366) Sensitive region The mainplayers LHC direct searches: Light SUSY masses LHC Higgs searches +h2: Inter- Mediate SUSY masses Direct DM searches +h2: Heavy SUSY masses Combination: in CMSSM WIMP >160 GeV, gluino > 1 TeV
Best-Fit Point Point 1: electroweak+ cosmologicalconstraints Point 2: electroweak+ cosmological+ LHC (directsearchesandmA+Ωh2) + DDMS
Comparisontoothergroups Strong correlationbetweenA0 und tanβ Buchmueller et al. arXiv: 1110.3568
Theoretical errors can be treated as nuisance parameters and integrated over in the probability distribution (=convolution for symm. distr.) If errors Gaussian, this corresponds to adding the experimental and theoretical errors in quadrature Assume σtheo ~ σexp (only then important) How to treat theoretical errors? Convolution of Gaussian + “flat top Gaussian” Convolution of 2 Gaussians Adding errors linearly more conservative approach for theory errors.
EWSB and PseudoscalarHiggs Mass mA Higgs potential: CP-even lightest Higgs <130 GeV CP-even neutral heavy Higgs H CP-odd neutral Higgs A CP-even charged HiggsesH mA2=m12+m22becomes ALWAYS small at large tan m1mb tan EWSB wenn m2 <0, possible by rad. corr. AND 140 < mt < 200 GeV (pred. from SUSY, Inoue et al, 1982, wdb et al., hep-ph/9805378) At large m0: shouldbecomesmall in order toreach m2<0 beforemZ m2mt