1 / 27

Conventional Pollutants in Rivers and Estuaries

Conventional Pollutants in Rivers and Estuaries. ORGANIC MATTER. OXYGEN. DECOMPOSITION (bacteria/animals ). PRODUCTION (plants). Chemical energy. Solar energy. CARBON DIOXIDE. INORGANIC NUTRIENTS. THE DISSOLVED OXYGEN SAG. WWTP. River. DO (mgL -1 ). Critical concentration

aman
Download Presentation

Conventional Pollutants in Rivers and Estuaries

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Conventional Pollutants in Rivers and Estuaries ORGANIC MATTER OXYGEN DECOMPOSITION (bacteria/animals) PRODUCTION (plants) Chemical energy Solar energy CARBON DIOXIDE INORGANIC NUTRIENTS

  2. THE DISSOLVED OXYGEN SAG WWTP River DO (mgL-1) Critical concentration (decomposition=reaeration) Distance Decomposition dominates Rearetion dominates

  3. BIOCHEMICAL OXYGEN DEMAND • Experiment • decomposition of carbonaceous matter • C6H12O6+6O2 6CO2+6H2O • Mass balance  • General solution g=g0e -k1t • Oxygen mass balance  • General solution for oxygen

  4. BIOCHEMICAL OXYGEN DEMAND(ctd.) L=rog g L=L0 exp(-k1t) BOD=L0-L

  5. Streeter-Phelps equation • Steady state for ultimate BOD  • Steady state for DO  • Deficit D=Cs-C  • Solutions: • BOD : • D:

  6. Streeter-Phelps Equation (Example) • L0=10 mg L-1 • ka=2.0 d-1 • kd=0.6 d-1 • D0 = 0 mgL-1 • U=16.4 mi d-1

  7. Streeter-Phelps Equation (Code) • function dy=dydx_sp(x, y) • global ka kd U • L=y(1); • D=y(2); • dy=y; • dy(1)=-kd/U*L; • dy(2)=+kd/U*L-ka/U*D; • xspan=0:100; • %parameter definition • global ka kd U • ka=2.0; • kd=0.6; • U=16.4 • y0=[10 0]'; • %initial concentrations are given in mg/L • [x,y] = ODE45('dydx_sp',xspan,y0) ; • plot(x, y(:,1),'linewidth',1.25) • hold on • plot(x, y(:,2),'r','linewidth',1.25); • do_an=y0(2)*exp(-ka*x/U)+y0(1)*... • kr/(ka-kd)*(exp(-kd*x/U)-exp(-ka*x/U)); • ylabel('mg L^{-1}') • xlabel('Distance (mi)') • legend('BOD', 'DO') • plot(x,do_an,'r+')

  8. Critical Deficit and Distance • Dc , xc dDc/dxc=0

  9. DC’S DEPENDENCE ON VARIOUS FACTORS • Increases with W=LQ • Increases with T • Increases with D0 • Decreases with Q

  10. Stream Re-aeration Formulas • O’Connor-Dobbins • Owens-Edwards-Gibbs • H=1-2.5; U=0.1-0.5; Q=4-36 • USGS • ka = re-aeration constant, d-1 • U = mean stream velocity, ft-1 • H = mean stream depth, ft • Q = flow-rate, ft3s-1 • t = travel time, d

  11. Sedimentation of BOD kd ka L D 0 ks • Steady state for ultimate BOD  • Deficit D=Cs-C  • Solution

  12. Estimation of kr and kd in a stream

  13. Principle of Superposition • Mass balance for DO deficit • In terms of L and N

  14. Diurnal Variations

  15. Sensitivity Analysis • First order analysis • y=f(x) • y0=f(x0)

  16. Sensitivity Analysis • Monte Carlo Analysis • 1. Generate dx0 = N(0,x) • 2. Determine y=f(x0+dx0) • 3. Save Y={Y | y} • 4. i=i+1 • 5. If i < imax go to 1 • 6. Analyze statistically Y

  17. xspan=0:100; %parameter definition Lr=zeros(100,101); Dr=zeros(100,101); global ka kd U U=16.4; y0=[10 0]'; %initial concentrations are given in mg/L for i=1:100, ka=2.0+0.3*randn; kd=0.6+0.1*randn; while ka < 0 | kr < 0, ka=2.0+0.3*randn; kd=0.6+0.1*randn; end [x,y] = ODE45('dydx_sp',xspan,y0) ; Lr(i,:)=y(:,1)'; Dr(i,:)=y(:,2)'; end subplot 211 plot(x, mean(Lr,1),'linewidth',1.25) hold on plot(x, mean(Lr,1)+std(Lr,0,1),'--', … 'linewidth',1.25) plot(x, mean(Lr,1)-std(Lr,0,1),'--', … 'linewidth',1.25) ylabel('mg L^{-1}') title('BOD vs. distance') subplot 212 plot(x, mean(Dr,1),'r','linewidth',1.25); hold on plot(x, mean(Dr,1)+std(Dr,0,1),'r--', … 'linewidth',1.25); plot(x, mean(Dr,1)-std(Dr,0,1),'r--', … 'linewidth',1.25); xlabel('Distance (mi)') title('DO Deficit vs. distance') print -djpeg bod_mc.jpeg

  18. DYNAMIC APPROACH • Routing water (St. Venant equations) • Continuity equation • Momentum equation (Local acceleration + Convective acceleration+pressure + gravity + friction = 0 Kinematic wave Diffusion wave Dynamic wave

  19. KINEMATIC ROUTING • Geometric slope = Friction slope • Manning’s equation • Express cross section area as a function of flow

  20. KINEMATIC ROUTING (ctd) • Express the continuity equation exclusively as a function of Q • Discretize continuity equation and solve it numerically k+1 t k 1 2 3 4 5 n n-1 n x

  21. KINEMATIC ROUTING (ctd) • Discretize continuity equation and solve it numerically • Example • Q=2.5m3s-1; S0=0.004 • B=15m; n0=0.07 • Qe=2.5+2.5sin(wt); w=2pi(0.5d)-1

  22. S0=0.004; B=15; n0=0.07; n=80; Q=zeros(2,n)+2.5; dx=1000.; %meters dt=700.; %seconds alpha=(n0*B^(2./3.)/sqrt(S0))^(3./5.) beta=3./5.; for it=1:150 if it*dt/24/3600 < 0.25 Q(2,1)=2.5+2.5* … sin(2.*pi*it*dt/(0.5*24*3600)); else Q(2,1)=2.5; end for i=2:n Q(2,i)=(dt/dx*Q(2,i-1)* … ((Q(1,i)+Q(2,i-1))/2.)^(1-beta)... +alpha*beta*Q(1,i))/… (dt/dx*((Q(1,i)+Q(2,i-1))/2.)^(1-beta)... +alpha*beta); end Q(1,:)=Q(2,:); if floor(it/40)*40==it x=1:n; plot(x,Q(1,:)); hold on end end

  23. ROUTING POLLUTANTS • Mass conservation • Discretized mass balance equation k+1 t k 1 2 3 4 5 n n-1 n x

  24. ROUTING POLLUTANTS (ctd) • Alternate formulation • Example • u = 1 ms-1 • x = 1000 m • t = 500 m

  25. ROUTING POLLUTANTSNumerical Example u=1.; %m/s dx=1000; %m dt=500; %s n=100; x=1:100; y=x-20; c0=exp(-0.015*y.*y); c1=c0; plot(x,c0); hold on for it=1:120 for i=2:n-1 c1(i)=c0(i)+u*dt/dx* … (c0(i-1)-c0(i)); end c0=c1; if fix(it/40)*40==it plot(x,c0); end end xlabel('x (km)'); ylabel('C mgL^{-1}');

  26. ROUTING POLLUTANTS (ctd) • More accurate (second order both time and space) formulation

More Related