1 / 19

Conventional Pollutants in Rivers and Estuaries

Conventional Pollutants in Rivers and Estuaries. ORGANIC MATTER. OXYGEN. DECOMPOSITION (bacteria/animals ). PRODUCTION (plants). Chemical energy. Solar energy. CARBON DIOXIDE. INORGANIC NUTRIENTS. Principle of Superposition. Mass balance for DO deficit In terms of L and N.

myrrh
Download Presentation

Conventional Pollutants in Rivers and Estuaries

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Conventional Pollutants in Rivers and Estuaries ORGANIC MATTER OXYGEN DECOMPOSITION (bacteria/animals) PRODUCTION (plants) Chemical energy Solar energy CARBON DIOXIDE INORGANIC NUTRIENTS

  2. Principle of Superposition • Mass balance for DO deficit • In terms of L and N

  3. Diurnal Variations

  4. PHOTOSYNTHESIS CHARACTERISTICS • Dissolved oxygen deficit mass balance

  5. function ee=errordef(x) ka=x(1); Pm=x(2); Dm=x(3); dox=[…] tt=[…] n=10; f=13./24; bn=1:2; for i=1:10 bn(i)=cos(i*pi*f)*4*pi/f/((pi/f)^2-(2*pi)^2*i*i); end d=1:24; Tp=1.; for t=1:24 d(t)=Dm; for i=1:10 d(t)=d(t)-Pm*bn(i)/(ka^2+(2*pi*i/Tp)^2)^0.5* ... cos(2*pi*i/Tp*(t/24.-f*Tp/2.)-atan(2*pi*i/ka/Tp)); end end ta=tt+273.15; os=ta; for i=1:24 os(i)=-139.34411+1.575701e5/ta(i)- … 6.642308e7/ta(i)^2+1.2438e10/ta(i)^3- ... 8.621949e11/ta(i)^4; end os=exp(os); d=os-d; ee=norm(dox-d);

  6. DYNAMIC APPROACH • Routing water (St. Venant equations) • Continuity equation • Momentum equation (Local acceleration + Convective acceleration+pressure + gravity + friction = 0 Kinematic wave Diffusion wave Dynamic wave

  7. KINEMATIC ROUTING • Geometric slope = Friction slope • Manning’s equation • Express cross section area as a function of flow

  8. KINEMATIC ROUTING (ctd) • Express the continuity equation exclusively as a function of Q • Discretize continuity equation and solve it numerically k+1 t k 1 2 3 4 5 n n-1 n x

  9. KINEMATIC ROUTING (ctd) • Discretize continuity equation and solve it numerically • Example • Q=2.5m3s-1; S0=0.004 • B=15m; n0=0.07 • Qe=2.5+2.5sin(wt); w=2pi(0.5d)-1

  10. S0=0.004; B=15; n0=0.07; n=80; Q=zeros(2,n)+2.5; dx=1000.; %meters dt=700.; %seconds alpha=(n0*B^(2./3.)/sqrt(S0))^(3./5.) beta=3./5.; for it=1:150 if it*dt/24/3600 < 0.25 Q(2,1)=2.5+2.5* … sin(2.*pi*it*dt/(0.5*24*3600)); else Q(2,1)=2.5; end for i=2:n Q(2,i)=(dt/dx*Q(2,i-1)* … ((Q(1,i)+Q(2,i-1))/2.)^(1-beta)... +alpha*beta*Q(1,i))/… (dt/dx*((Q(1,i)+Q(2,i-1))/2.)^(1-beta)... +alpha*beta); end Q(1,:)=Q(2,:); if floor(it/40)*40==it x=1:n; plot(x,Q(1,:)); hold on end end

  11. ROUTING POLLUTANTS • Mass conservation • Discretized mass balance equation k+1 t k 1 2 3 4 5 n n-1 n x

  12. ROUTING POLLUTANTS (ctd) • Alternate formulation • Example • u = 1 ms-1 • x = 1000 m • t = 500 m

  13. ROUTING POLLUTANTSNumerical Example u=1.; %m/s dx=1000; %m dt=500; %s n=100; x=1:100; y=x-20; c0=exp(-0.015*y.*y); c1=c0; plot(x,c0); hold on for it=1:120 for i=2:n-1 c1(i)=c0(i)+u*dt/dx* … (c0(i-1)-c0(i)); end c0=c1; if fix(it/40)*40==it plot(x,c0); end end xlabel('x (km)'); ylabel('C mgL^{-1}');

  14. ROUTING POLLUTANTS (ctd) • Second order (both time and space) formulation • Stability condition

  15. ROUTING POLLUTANTS (ctd) • Numerical oscillations

  16. OXYGEN BALANCE GENERAL NUMERICAL APPROACH 1 • Do spatial discretization • Route the water for each reach • Apply water continuity at junctions • Q8+Q15=Q16 • Route the pollutants for each reach • Apply pollutant continuity junctions • Solve the production/decomposition for each grid point Reach 1 2 3 9 4 10 11 5 12 6 13 14 7 Reach 2 15 8 16 17 18 19 Reach 3 20 21 22

  17. Sensitivity Analysis • First order analysis • y=f(x) • y0=f(x0)

  18. Sensitivity Analysis • Monte Carlo Analysis • 1. Generate dx0 = N(0,x) • 2. Determine y=f(x0+dx0) • 3. Save Y={Y | y} • 4. i=i+1 • 5. If i < imax go to 1 • 6. Analyze statistically Y

  19. xspan=0:100; %parameter definition Lr=zeros(100,101); Dr=zeros(100,101); global ka kd U U=16.4; y0=[10 0]'; %initial concentrations are given in mg/L for i=1:100, ka=2.0+0.3*randn; kd=0.6+0.1*randn; while ka < 0 | kr < 0, ka=2.0+0.3*randn; kd=0.6+0.1*randn; end [x,y] = ODE45('dydx_sp',xspan,y0) ; Lr(i,:)=y(:,1)'; Dr(i,:)=y(:,2)'; end subplot 211 plot(x, mean(Lr,1),'linewidth',1.25) hold on plot(x, mean(Lr,1)+std(Lr,0,1),'--', … 'linewidth',1.25) plot(x, mean(Lr,1)-std(Lr,0,1),'--', … 'linewidth',1.25) ylabel('mg L^{-1}') title('BOD vs. distance') subplot 212 plot(x, mean(Dr,1),'r','linewidth',1.25); hold on plot(x, mean(Dr,1)+std(Dr,0,1),'r--', … 'linewidth',1.25); plot(x, mean(Dr,1)-std(Dr,0,1),'r--', … 'linewidth',1.25); xlabel('Distance (mi)') title('DO Deficit vs. distance') print -djpeg bod_mc.jpeg

More Related