2.19k likes | 2.32k Views
CONTROL SYSTEMS. B.Tech – II – ECE – II SEMESTER. M.MYSIAH Assistant Professor ACE ENGINEERING COLLEGE. 5. UNIT - II. Time. R esponse. An a l y sis. UNIT – II: Time R esponse Anal y sis. . Time Do m ain A n al y sis. . T r ansi e n t and S t eady S t at e R esponse
E N D
CONTROL SYSTEMS B.Tech – II – ECE – II SEMESTER M.MYSIAH Assistant Professor ACE ENGINEERING COLLEGE M.MYSAIAH 5
UNIT - II Time Response Analysis M.MYSAIAH
UNIT – II: TimeResponseAnalysis TimeDomainAnalysis TransientandSteadyStateResponse StandardTestInputs:Step,Ramp,ParabolicandImpulse,Need,Significance and correspondingLaplaceRepresentation PolesandZeros: Definition,S-planerepresentation First andSecondorderControl System FirstOrderControlSystem: AnalysisforstepInput,Conceptof Time Constant SecondOrderControlSystem:Analysisforstepinput,Concept,Definitionand effectofdamping TimeResponse Specifications TimeResponse Specifications( noderivations ) Tp,Ts,Tr,Td, Mp,ess– problems ontime responsespecifications Steady State Analysis – Type 0, 1, 2 system, steady state error constants, problems M.MYSAIAH 6
SpecificObjectives: Appreciatetheimportanceofstandard apply them in analysis ofcontrolsystem. Differentiatebetweenpolesand zeros. inputs and Analyze input. Calculate systems. 1st& 2nd order control system for step timeresponse specificationsfor different M.MYSAIAH 12
UNIT - II :TimeResponseAnalysis TimeDomainAnalysis Transientand SteadyStateResponse StandardTestInputs:Step,Ramp,ParabolicandImpulse,Need,Significance and correspondingLaplaceRepresentation PolesandZeros: Definition,S-planerepresentation First andSecondorderControl System FirstOrderControlSystem: AnalysisforstepInput,Conceptof Time Constant SecondOrderControlSystem:Analysisforstepinput,Concept,Definitionand effectofdamping TimeResponse Specifications TimeResponse Specifications( noderivations ) Tp,Ts,Tr,Td, Mp,ess– problems ontime responsespecifications Steady State Analysis – Type 0, 1, 2 system, steady state error constants, problems M.MYSAIAH 13
TimeResponse In time domain analysis, time is the independent variable. When a system is given an excitation, thereis a response (output). Definition:Theresponseofasystemtoan applied excitation is called “Time Response” and it is a function of c(t). M.MYSAIAH 14
TimeResponse-Example Theresponseofmotor’sspeedwhena command is given to increase the speed is shown in figure, M.MYSAIAH 15
Asseenfromfigure,themotors speedgraduallypicksup from 1000 rpm and moves towards 1500 rpm. It overshootsand again corrects itself and finally settles downat the last value M.MYSAIAH 16
TimeResponse-Example The response of lift to a input to move up is shown in figure; M.MYSAIAH 17
TimeResponse Generallyspeaking, theresponse of any system thus has two parts (i)TransientResponse (ii) Steady State Response M.MYSAIAH 18
TransientResponse Thatpartofthetimeresponsethatgoestozeroas time becomes very large is called as “Transient Response” 0 L t c(t) i.e. As the name suggests that transient response remains only for some time from initial state to final state. M.MYSAIAH 19
TransientResponse Fromthetransientresponsewecanknow; Whensystembeginsto respondafteraninputisgiven. Howmuchtimeit takesto reachthe time. Whethertheoutputshootsbeyond &howmuch. Whetherthe outputoscillatesabout outputforthefirst the desiredvalue its finalvalue. Whendoesitsettleto thefinalvalue. M.MYSAIAH 20
SteadyStateResponse That partof the response that remains after the transients have died out is called “Steady State Response”. Fromthesteadystatewe How longittook before canknow; steady statewasreached. Whether there is any error between the desired and actualvalues. Whetherthiserror totracktheinput. isconstant,zeroorinfinitei.e.unable M.MYSAIAH 21
SteadyState Response M.MYSAIAH 22
Steady State Response M.MYSAIAH 23
TimeResponseAnalysis TimeDomainAnalysis TransientandSteadyStateResponse StandardTestInputs:Step,Ramp,ParabolicandImpulse,Need, and correspondingLaplaceRepresentation PolesandZeros: Definition,S-planerepresentation Significance First andSecondorderControl System FirstOrderControlSystem: AnalysisforstepInput,Conceptof Time Constant SecondOrderControlSystem:Analysisforstepinput,Concept,Definitionand effectofdamping TimeResponse Specifications TimeResponse Specifications( noderivations ) Tp,Ts,Tr,Td, Mp,ess– problems ontime responsespecifications Steady State Analysis – Type 0, 1, 2 system, steady state error constants, problems M.MYSAIAH 24
StandardTestSignal It is very interesting fact to know that most controlsystemsdonotknow aregoingtobe. whattheirinputs Thussystemdesigncannot bedonefrominput point of view as we are unable to know in advance the type input M.MYSAIAH 25
Needof StandardTestSignal From example; Whenaradartracks anenemy planethenature random. oftheenemyplane’svariationis Theterrain,curvesonroadetc. drivesinanautomobilesystem. arerandom fora The loading on a shearing machine when and whichloadwill beappliedor thrownof. M.MYSAIAH 26
Needof StandardTestSignal Thusfromsuchtypesofinputswe can expect a system in general to get aninputwhichmaybe; a) b) c) d) A A A A suddenchange momentaryshock constantvelocity constantacceleration Hencethesesignalsformstandardtestsignals. Theresponse to these signalsis analyzed.Theaboveinputsare calledas, a) b) c) d) Stepinput - Signifies asuddenchange Impulse input– Signifies momentaryshock Rampinput– Signifies aconstantvelocity Parabolicinput – Signifies constantacceleration M.MYSAIAH 27
StandardTestSignal Step Input Mathematical Representations Graphical Representations r(t) =R. = 0 u(t) t>0 t<0 Thissignal signifies a sudden change in the reference input r(t) at time t=0 R s L{Ru(t)} LaplaceRepresentations M.MYSAIAH 28
StandardTestSignal Unit StepInput Graphical Representations Mathematical Representations r(t) =1.u(t)= 1 = 0 t>0 t<0 Thissignalsignifiesa suddenchange in the reference input r(t) at time t=0 1 s L{u(t)} LaplaceRepresentations M.MYSAIAH 29
StandardTestSignal Ramp Input Mathematical Representations Graphical Representations r(t) = = R.t 0 t>0 t<0 Signal have constantvelocity i.e.constantchange in it’svaluew.r.t. time R L{Rt} LaplaceRepresentations s2 M.MYSAIAH 30
StandardTestSignal Unit Ramp Input Mathematical Representations GraphicalRepresentations r(t) =1.t = 0 t>0 t<0 If R=1it iscalled aunitramp input 1 L{1t} LaplaceRepresentations s2 M.MYSAIAH 31
StandardTestSignal ParabolicInput Graphical Representations Mathematical Representations 2 Rt r(t) = t>0 2 = 0 t<0 R L{Rt} LaplaceRepresentations s3 M.MYSAIAH 32
StandardTestSignal Impulse Input Graphical Representations Mathematical Representations (t) r(t) = =1 t>0 =0 t<0 Thefunctionhasaunit valueonly for t=0. Inpractical cases, a pulse whose time approacheszero is takenas animpulse function. L{ (t)}1 LaplaceRepresentations M.MYSAIAH 33
Module II –TimeResponseAnalysis TimeDomainAnalysis (4Marks) TransientandSteadyStateResponse StandardTestInputs:Step,Ramp,ParabolicandImpulse,Need,Significance and correspondingLaplaceRepresentation Poles and Zeros :Definition,S-planerepresentation First andSecondorderControl System (8 Marks) FirstOrderControlSystem: AnalysisforstepInput,Conceptof Time Constant SecondOrderControlSystem:Analysisforstepinput,Concept,Definitionand effectofdamping TimeResponse Specifications (8Marks) TimeResponse Specifications( noderivations ) Tp,Ts,Tr,Td, Mp,ess– problems ontime responsespecifications Steady State Analysis – Type 0, 1, 2 system, steady state error constants, problems M.MYSAIAH 34
Poles&Zerosof TransferFunction Thetransferfunctionisgivenby, C(s) G(s) R(s) polynomials Both C(s) and R(s)are ins m1 m bms bm1s .............bo G(s) n1 n s an1s ..................an K(sb1)(sb2)(sb3)............(sbm) (sa1)(sa2)(sa3)............(san) Where, K= n= system Typeof gain system M.MYSAIAH 35
Poles Thevaluesof‘s’,forwhichthetransferfunction magnitude |G(s)| becomes infinite after substitution in the denominator of the system arecalled as “Poles”of transfer function. M.MYSAIAH 11/21/2016 36
Example1 Determine the polesofgiven transferfunction. s(s2)(s4) G(s) s(s3)(s4) be obtained Solution: Thepolescan withzero by equating denominator s(s3)(s4) s0 s30 s40 0 s3 s4 Thepoles are s=0,-3, -4 M.MYSAIAH 37
S-plane Representation of Poles j 3j 2j j 0 -1 -2 -5 -4 -3 -j -2j -3j M.MYSAIAH 11/21/2016 38
Zeros The values of ‘s’, for which the transfer function magnitude |G(s)| becomes zero after substitution in the numerator of the system are called as “Zeros” of transfer function. M.MYSAIAH 39
Example2 Determinethe zeros ofgiven transferfunction. s(s2)(s4) G(s) s(s3)(s4) Solution:The zeros canbe obtained by equating numerator with zero s(s2)(s4) s0 s20 s40 0 s2 s4 Thepoles are s=0,-2, -4 M.MYSAIAH 40
S-plane Representation of Zeros j 3j 2j j 0 -1 -2 -5 -4 -3 -j -2j -3j M.MYSAIAH 41
Pole-ZeroPlot Thediagramobtainedbylocatingallpolesandzerosof thetransferfunctioninthes-planeiscalledas“Pole-zero plot”. The s-planehastwo axis real andimaginary. Since sj , theX-axis standsfor real axis andshows avalueof . j Similarly, imaginary Y-axis axis. stands for and represents the M.MYSAIAH 42
Pole- Zero Plot for Example 1and 2 j 3j 2j j 0 -1 -2 -5 -4 -3 -j -2j -3j M.MYSAIAH 43
CharacteristicsEquation Definition: The equation obtainedby equating transfer the denominator polynomial calledasthe of a functionto Equation” zerois “Characteristics n1 n2 n s an an2s ...............an 1s M.MYSAIAH 44
Example3 For the given transfer function, K(s6) T.F. 2)(s5)(s27s12) s(s Find:(i)Poles (iii)Pole-zero Plot (ii)Zeros (iv)Characteristics Equation Solution:(i)Poles The poles can be obtainedby equating s(s2)(s5)(s27s12)0 denominator with zero s0 s20 s50 s2 s5 M.MYSAIAH 45
Example 3 Cont…. s(s2)(s5)(s27s12) 0 (s27s12) (s3)(s4) s30 s40 Thepoles are s=0, -2, -3, -4, (ii)Zeros: s3 s4 -5 Thezeroscan be obtainedby equating numerator withzero s60 s6 Thezerosare s=-6 M.MYSAIAH 46
Example3 Cont…. (iii) Pole-zero plot: j 3j 2j j 0 -1 -2 -6 -5 -4 -3 -j -2j -3j M.MYSAIAH 47
Example3 Cont…. (iv) Characteristics Equation: s(s2)(s5)(s27s12)0 s(s27s10)(s27s12)0 (s37s210s)(s2 7s12) 0 s57s412s37s449s384s210s370s2120s 0 s514s471s3154s2120s0 M.MYSAIAH 48
Example4 For the given transfer function, (s2) C(s) s(s22s2)(s27s12) R(s) Find:(i)Poles (iii)Pole-zero Plot (ii)Zeros (iv)Characteristics Equation Solution:(i)Poles The poles can be obtainedby equatingdenominator s(s22s2)(s27s12)0 with zero s0 s30 s40 s3 s4 M.MYSAIAH 49
Example4 Cont…. s(s2 2s2)(s27s12) 0 b2 b 4ac roots 2a s1 s1 j j Thepoles are s=0, -3, (ii)Zeros: -4, -1+j,-1-j Thezeroscan be obtainedby equating numeratorwithzero s20 s2 Thezerosare s=-2 M.MYSAIAH 50
Example4 Cont…. (iii) Pole-zero plot: j 3j 2j j 0 -2 -1 -6 -5 -4 -3 -j -2j -3j M.MYSAIAH 51
Example4 Cont…. (iv)Characteristics Equation: s(s22s2)(s27s12)0 (s32s22s)(s27s12)0 s57s412s32s414s324s22s314s224s 0 s59s428s338s224s 0 M.MYSAIAH 52
Example5 For the given transfer function, (s2) T .F. s(s4)(s26s25) Find:(i)Poles (iii)Pole-zero Plot (ii)Zeros (iv)Characteristics Equation Solution:(i)Poles The poles can be obtained by equating denominator with zero s(s4)(s26s25)0 s0 s40 s4 M.MYSAIAH 53
Example5 Cont…. s(s4)(s26s25) 0 b2 b 4ac roots 2a s3j4 s3j4 Thepoles are s= 0, -4, (ii)Zeros: -3+j4, -3-j4 Thezeroscan be obtainedby equating numerator withzero s20 s2 Thezerosare s=-2 M.MYSAIAH 54
Example 5 Cont…. j (iii) Pole-zero plot: 4j -4 - 3j 2j j -j -2j -3j 0 -2 -1 -6 -5 -4 -3 -4j M.MYSAIAH 55
Example5 Cont…. (iv) Characteristics Equation: s(s4)(s26s25)0 (s24s)(s26s25)0 s46s325s24s324s2100s 0 s410s349s2100s 0 M.MYSAIAH 56
Module II –TimeResponseAnalysis TimeDomainAnalysis (4Marks) TransientandSteadyStateResponse StandardTestInputs:Step,Ramp,ParabolicandImpulse,Need,Significance and correspondingLaplaceRepresentation PolesandZeros: Definition,S-planerepresentation First andSecondorderControl System (8 Marks) FirstOrderControlSystem:AnalysisforstepInput,ConceptofTimeConstant SecondOrderControlSystem:Analysisforstepinput,Concept,Definitionand effectofdamping TimeResponse Specifications (8Marks) TimeResponse Specifications( noderivations ) Tp,Ts,Tr,Td, Mp,ess– problems ontime responsespecifications Steady State Analysis – Type 0, 1, 2 system, steady state error constants, problems M.MYSAIAH 57
Analysisof firstordersystem forStep input Considera first order system as shown; 1 Ts + C(s) R(s) - 1 1 H(s) G(s) Here and Ts 1 C(s) R(s) G 1 Ts 1GH 1Ts 1 1 Ts M.MYSAIAH 58