900 likes | 1.13k Views
MATH 237 FINAL Niall W. MacGillivray. Outline. 1.1-8.2 Review 8.3 Generalizations of Taylor Polynomials 9.1 Local Extrema and Critical Points 9.2 Second Derivative Test 10.1-10.2 Extreme Values 10.3 Lagrange Multipliers
E N D
MATH 237 FINAL Niall W. MacGillivray
Outline 1.1-8.2 Review 8.3 Generalizations of Taylor Polynomials 9.1 Local Extrema and Critical Points 9.2 Second Derivative Test 10.1-10.2 Extreme Values 10.3 Lagrange Multipliers 11.1 Polar Coordinates 11.2 Cylindrical Coordinates 11.3 Spherical Coordinates
Outline cont’d 12.1-12.2 R2 → R2 Mappings 12.3 Composite Mappings and Chain Rule 13.1-13.2 Jacobian and Inverse Mapping Theorem 13.3 Creating Mappings 14.1 Double Integrals 14.2 2-fold Iterated Integrals 14.3 Change of Variables (2D) 15.1 Triple Integrals 15.2 3-fold Iterated Integrals 15.3 Change of Variables (3D)
10.1-10.2 Extreme Values Algorithm
10.3 Lagrange Multipliers Algorithm
11.1 Polar Coordinates • Useful when there is a symmetry about the origin • Non-unique representation of points, unless we have restrictions on the angle
11.1 Polar Coordinates Area in Polar Coordinates
11.2 Cylindrical Coordinates • Useful when there is a symmetry about an axis • Non-unique representation of points, unless we have restrictions on the angle
11.3 Spherical Coordinates • Useful when there is a symmetry about the origin • Non-unique representation of points, unless we have restrictions on the angle
12.1-12.2 R2 → R2 Mappings Linear Approximations
12.1-12.2 R2 → R2 Mappings Generalizations
12.1-12.2 R2 → R2 Mappings Generalizations Cont’d