470 likes | 513 Views
Explore the main 4-nucleon fusion reaction as a testing ground for microscopic calculations with systematic spin correlation coefficient measurements, enhancing cross section, and suppressing neutrons. Follow the history of the PolFusion collaboration's experiments on polarized deuterium fusion. Learn about trajectory control of fusion products and the optimization of magnet systems. Discover the design, cooling system, dissociator, and other elements of the ABS beam at Petersburg Nuclear Physics Institute.
E N D
Petersburg Nuclear Physics Institute DOUBLE POLARIZED DD-FUSION P. Kravtsov for the PolFusion collaboration P. Kravtsov
Double polarized dd-fusion The main 4-nucleon fusion reaction – good testing ground for microscopic calculations t + p d + d 3He + n • Systematic measurements of the spin-correlation coefficients • Cross section increase • [R.M. Kulsrud et al., Phys. Rev. Lett. 49, 1248 (1982)] • 3He+d → 4He+p : Factor ~1.5 at 430 keV • [Ch. Leemann et al., Annals of Phys. 66, 810 (1971)] • Neutrons suppression • Quintet suppression factor • [H. Paetz gen. Schieck, Eur. Phys. J. A 44, 321–354 (2010)] • [Deltuva and Fonseca, Phys. Rev. C 81 (2010)] • Trajectories control of the fusion products P. Kravtsov
History (Polarized) Deuterium Fusion experiments P. Kravtsov
The Quintet suppression factor Direct experiment required! P. Kravtsov
Measurement of the polarization correlation coefficients in reactions 2H(d, p)3H and 2H(d, n)3He at low energies. History B.P. Ad’jasevich, V.G. Antonenko 1976 P. Kravtsov
PolFusion PolFusion collaboration Petersburg Nuclear Physics Institute, Russia Forschungszentrum Jülich, Germany Cologne University, Germany Juelich ABS Polarimetry Detector SAPIS ABS KVI, Gronningen, Netherlands University ITMO, St.Petersburg, Russia POLIS students ABS ABS ABS Detector POLIS Exp. Hall Polarimetry Ferrara University, Italy P. Kravtsov
Experiment layout (60000 events) P. Kravtsov
Experiment layout (60000 events) P. Kravtsov
ABS (based on SAPIS ABS) Magnet system optimization Before optimization After optimization ~6000 L/s P. Kravtsov
Trajectories simulation • True 3-dimensional simulation • Multipole magnetic field model Magnetic field model of the multipole magnets A. Vasilyev, S. Sherman, Preprint PNPI-2720 (2007) P. Kravtsov
Permanent multipole magnets • 3-dimensional FEM calculations • Cheap NdFeB magnets Magnetic field model of the multipole magnets K. Ivshin et al., Preprint PNPI-2925 (2013) P. Kravtsov
ABS dissociator • Water cooling • Vacuum system • Control system • Dissociator • Magnet support • RF units Cooled nozzle (70-300K) plasma P. Kravtsov
Ferrara ABS • 4 times higher intensity • Compact design P. Kravtsov
Degree of dissociation and intensity measurements Two-coordinate table • QMS • Compression tube • Faraday cup P. Kravtsov
POLIS Ion source 2010 P. Kravtsov
POLIS. Control system. • compact (high channel density) • widely used in our systems at BNL, FZJ, PSI, GSI and AIRBUS test rig • VERY old (is not supported 10 years) • failed to work in KVI before departure P. Kravtsov
POLIS. New control system (cooling + vacuum). P. Kravtsov
POLIS. Current state. • Water cooling • Vacuum system [pressure : 2·10-7 mbar] • Control system [vacuum and cooling only] • Magnets • Dissociator • RF units P. Kravtsov
Cooling system • System parameters: • Liquid-air heatexchanger • Cooling power: 100kW • Coolant: water + 10% ethanol • Flowrate: 1.4 l/s • Temperature drop: 30-50°C P. Kravtsov
Polarimetry ABS beam: Lamb-shift Polarimeter Ion beam: Lamb-shift Polarimeter or Nuclear Reaction Polarimeter LSP: Ed<=4keV, short-term measurements NRP: Ed>=19keV, long-term measurements (target deuterium is renewed by the beam) Proof of principle: L. Kroell. Diploma thesis, 2010. FZJ – RWTH. P. Kravtsov
Interaction chamber and detector system Readout electronics connectors Helmholtz coils NdFeB permanent magnets Detector system Interaction chamber P. Kravtsov
Detector system. PIN diodes version. • 4- detector setup with 51% filling • ~ 576 Hamamatsu Si PIN photodiodes (S3590-09) • 1 cm2 active area • 300 um depletion layer • good energy resolution (17 keV for 1 MeV Carbon ions at RHIC) Square detector elements (4x4 diodes) Standard PCB assembly with spring through-hole mounting (no solder!) P. Kravtsov
Detector test bench Alpha-source: 239Pu + 240Pu = 80.4% 238Pu + 241Am = 19.6% 234U + 235U + 238U 241Am P. Kravtsov
PIN-diode measurements: Dead layer thickness Alpha-source: Pu239 + Pu240 = 80.4% Pu238 + Am241 = 19.6% Dead layer measurements: P. Monich. Bachelor thesis, 2011. ITMO University. D≤1μm P. Kravtsov
PIN-diode measurements: Surface scan P. Kravtsov
PIN-diode measurements: Hydrogen vacuum Test condition: 10-4 mbar hydrogen Experiment condition: 10-5÷10-6mbar P. Kravtsov
Readout electronics CSP from ATLAS CSC [BNL] Readout requirements: • 600 channels • Total count rate≤ 1kHz • Standard interface (Ethernet?) • Event synchronization for coincidence trigger Junnarkar et al. IEEE Nuclear Science Symposium Conference Record (2005) P. Kravtsov
Readout electronics: module diagram P. Kravtsov
Readout electronics prototype P. Kravtsov
Readout electronics: test signal Test pulse ~ 1 MeV P. Kravtsov
Working Plan • Infrastructure • Experimental hall preparation March 2011 • Platform for electronics May 2011 • Water cooling system June 2013 • Assemble and run the POLIS source • Mechanical assembling June 2011 • Vacuum+ water distribution system March 2012 • Control system February 2012 • Adjustments and tuning End 2013 • Solid target experiment Spring 2014 • Upgrade of the SAPIS ABS • Vacuum system December 2012 • Magnet system design February 2013 • Dissociator design June 2013 • Transition units design March 2013 • ABS tests and tuning December 2013 • Detector system • Interaction chamber April 2011 • PIN-diod measurements September 2012 • Mechanical support design Spring 2012 • Readout electronics design Fall 2012 • Electronics production December 2013 P. Kravtsov
Thank you! P. Kravtsov
BACKUP P. Kravtsov
Charge sensitive preamplifier (CSP) CSP from ATLAS CSC [BNL] P. Kravtsov
Hyperfine states P. Kravtsov
Count rate P. Kravtsov
Data situation Tagishi et al.; Phy. Rev. C 46 (1992) 1155-1158 [Analysing Powers: 2H(d,p)3H, solid target] Becker et al. Few Body Sys. 13 (1992) [Analysing Powers] Imig et al. Phys.Rev. C 73 (2006) [Spin-Transfer Koeff.] All experiments were performed at solid targets P. Kravtsov
The Formula Spins of both deuterons are aligned: Only pz(qz) and pzz(qzz) ≠ 0 Only beam is polarized: (pi,j ≠ 0, qi,j = 0) σ(ϴ,Φ) = σ0(ϴ) · {1 + 3/2 Ay(ϴ) py + 1/2 Axz(ϴ) pxz + 1/6 Axx-yy(ϴ) pxx-zz + 2/3 Azz(ϴ) pzz } P. Kravtsov
Unpolarized cross sections R. E. Brown, N. Jarmie, Phys. Rev. C 41 N4 (1990) P. Kravtsov
Polarization measurement P. Kravtsov
Deuterium polarization P. Kravtsov
Initial detector system • 4- rotational gimbal support • step motors with good angular resolution (~0.01 degree) P. Kravtsov
Experimental hall 2009 2010 Sep 2011 May 2011 P. Kravtsov
Experimental hall. Equipment layout P. Kravtsov
Electronics platform P. Kravtsov
Participating Institutions Petersburg Nuclear Physics Institute, Russia Forschungszentrum Jülich, Germany Cologne University, Germany KVI, Gronningen, Netherlands University ITMO, St.Petersburg, Russia Ferrara University, Italy Financial support: ISTC project #3881 Deutsche Forschungsgemeinschaft Ministry of Science and Education P. Kravtsov