1 / 23

Codon Optimization

Codon Optimization. Codon Optimization. Codon Usage Bias: Variable frequency of synonomous codons . Codon preferences reflect natural selection in organisms for translational optimization. Optimal codons allow faster translation rates, thus highly expressed genes are coded by these.

amelia
Download Presentation

Codon Optimization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Codon Optimization

  2. Codon Optimization • Codon Usage Bias: Variable frequency of synonomouscodons. • Codon preferences reflect natural selection in organisms for translational optimization. • Optimal codons allow faster translation rates, thus highly expressed genes are coded by these. • Codon optimization can be used to produce a synthetic version of a foreign gene for more efficient expression.

  3. Codon Usage of HIV vs. Human

  4. Expression Profile of Synthetic vs. Wildtype gp120

  5. HIV Codons Decrease Efficiency of Thy-1 Expression -Thy-1 is a highly expressed cell-surface protein. -Replacing codons of Thy-1 with HIV envelope codons significantly decreases expression.

  6. Codon Optimization of GFP • A: Control: Empty vector. • B: Native GFP from Aequoreavictoria. • C: Mammalian codon optimized GFP. • D: Mammalian codon optimized GFP + S65T replacement.

  7. E. Coli vs. Human Codon Usage

  8. Codon Optimization: Human to Bacteria

  9. Codon Optimization: Human to Bacteria

  10. Codon Optimization: Human to Bacteria

  11. Codon Optimization: Human to Bacteria

  12. Codon Optimization: Human to Bacteria

  13. Polymerase Chain Reaction • Molecular biology technique used to amplify specific nucleotide sequences. • Developed by Kary Mullis in 1983. • Takes advantage of Taq polymerase from thermophileThermusaquaticus. • Taq is a heat-resistant enzyme that can function in temperatures above 70°C.

  14. Polymerase Chain Reaction

  15. Polymerase Chain Reaction

  16. Components of PCR • Water • Taq Buffer containing divalent and monovalentcations – Provides suitable chemical environment for optimal activity of DNA polymerase (pH, [salt], co-factors,etc.) • DNA template containing target region to be amplified. • Sense and anti-sense primers. • Deoxynucleotidetriphosphates (dNTPs), the building-blocks for synthesis of new DNA. • Taq polymerase – has optimal activity around 70°C.

  17. Homework Assignment • NCBI • Search through GENE databases. • Enter the name of the gene of interest. • Search for Homo sapien or E. coli and select the gene. • Scroll down to mRNA and proteins and select. • Copy the “translation” • Encorbio • Select the organism that the gene will be codon optimized to. • Paste the amino acid sequence into the top box. • Generate the coding sequence.

  18. Example: Insulin-like Growth Factor 1 Receptor (IGF1R) • Amino Acid Sequence • MKSGSGGGSPTSLWGLLFLSAALSLWPTSGEICGPGIDIRNDYQQLKRLENCTVIEGYLHILLISKAEDYRSYRFPKLTVITEYLLLFRVAGLESLGDLFPNLTVIRGWKLFYNYALVIFEMTNLKDIGLYNLRNITRGAIRIEKNADLCYLSTVDWSLILDAVSNNYIVGNKPPKECGDLCPGTMEEKPMCEKTTINNEYNYRCWTTNRCQKMCPSTCGKRACTENNECCHPECLGSCSAPDNDTACVACRHYYYAGVCVPACPPNTYRFEGWRCVDRDFCANILSAESSDSEGFVIHDGECMQECPSGFIRNGSQSMYCIPCEGPCPKVCEEEKKTKTIDSVTSAQMLQGCTIFKGNLLINIRRGNNIASELENFMGLIEVVTGYVKIRHSHALVSLSFLKNLRLILGEEQLEGNYSFYVLDNQNLQQLWDWDHRNLTIKAGKMYFAFNPKLCVSEIYRMEEVTGTKGRQSKGDINTRNNGERASCESDVLHFTSTTTSKNRIIITWHRYRPPDYRDLISFTVYYKEAPFKNVTEYDGQDACGSNSWNMVDVDLPPNKDVEPGILLHGLKPWTQYAVYVKAVTLTMVENDHIRGAKSEILYIRTNASVPSIPLDVLSASNSSSQLIVKWNPPSLPNGNLSYYIVRWQRQPQDGYLYRHNYCSKDKIPIRKYADGTIDIEEVTENPKTEVCGGEKGPCCACPKTEAEKQAEKEEAEYRKVFENFLHNSIFVPRPERKRRDVMQVANTTMSSRSRNTTAADTYNITDPEELETEYPFFESRVDNKERTVISNLRPFTLYRIDIHSCNHEAEKLGCSASNFVFARTMPAEGADDIPGPVTWEPRPENSIFLKWPEPENPNGLILMYEIKYGSQVEDQRECVSRQEYRKYGGAKLNRLNPGNYTARIQATSLSGNGSWTDPVFFYVQAKTGYENFIHLIIALPVAVLLIVGGLVIMLYVFHRKRNNSRLGNGVLYASVNPEYFSAADVYVPDEWEVAREKITMSRELGQGSFGMVYEGVAKGVVKDEPETRVAIKTVNEAASMRERIEFLNEASVMKEFNCHHVVRLLGVVSQGQPTLVIMELMTRGDLKSYLRSLRPEMENNPVLAPPSLSKMIQMAGEIADGMAYLNANKFVHRDLAARNCMVAEDFTVKIGDFGMTRDIYETDYYRKGGKGLLPVRWMSPESLKDGVFTTYSDVWSFGVVLWEIATLAEQPYQGLSNEQVLRFVMEGGLLDKPDNCPDMLFELMRMCWQYNPKMRPSFLEIISSIKEEMEPGFREVSFYYSEENKLPEPEELDLEPENMESVPLDPSASSSSLPLPDRHSGHKAENGPGPGVLVLRASFDERQPYAHMNGGRKNERALPLPQSSTC • Codon Optimized Sequence • ATGAAAAGCGGCAGCGGCGGCGGCAGCCCGACCAGCCTGTGGGGCCTGCTGTTTCTGAGCGCGGCGCTGAGCCTGTGGCCGACCAGCGGCGAAATTTGCGGCCCGGGCATTGATATTCGCAACGATTATCAGCAGCTGAAACGCCTGGAAAACTGCACCGTGATTGAAGGCTATCTGCATATTCTGCTGATTAGCAAAGCGGAAGATTATCGCAGCTATCGCTTTCCGAAACTGACCGTGATTACCGAATATCTGCTGCTGTTTCGCGTGGCGGGCCTGGAAAGCCTGGGCGATCTGTTTCCGAACCTGACCGTGATTCGCGGCTGGAAACTGTTTTATAACTATGCGCTGGTGATTTTTGAAATGACCAACCTGAAAGATATTGGCCTGTATAACCTGCGCAACATTACCCGCGGCGCGATTCGCATTGAAAAAAACGCGGATCTGTGCTATCTGAGCACCGTGGATTGGAGCCTGATTCTGGATGCGGTGAGCAACAACTATATTGTGGGCAACAAACCGCCGAAAGAATGCGGCGATCTGTGCCCGGGCACCATGGAAGAAAAACCGATGTGCGAAAAAACCACCATTAACAACGAATATAACTATCGCTGCTGGACCACCAACCGCTGCCAGAAAATGTGCCCGAGCACCTGCGGCAAACGCGCGTGCACCGAAAACAACGAATGCTGCCATCCGGAATGCCTGGGCAGCTGCAGCGCGCCGGATAACGATACCGCGTGCGTGGCGTGCCGCCATTATTATTATGCGGGCGTGTGCGTGCCGGCGTGCCCGCCGAACACCTATCGCTTTGAAGGCTGGCGCTGCGTGGATCGCGATTTTTGCGCGAACATTCTGAGCGCGGAAAGCAGCGATAGCGAAGGCTTTGTGATTCATGATGGCGAATGCATGCAGGAATGCCCGAGCGGCTTTATTCGCAACGGCAGCCAGAGCATGTATTGCATTCCGTGCGAAGGCCCGTGCCCGAAAGTGTGCGAAGAAGAAAAAAAAACCAAAACCATTGATAGCGTGACCAGCGCGCAGATGCTGCAGGGCTGCACCATTTTTAAAGGCAACCTGCTGATTAACATTCGCCGCGGCAACAACATTGCGAGCGAACTGGAAAACTTTATGGGCCTGATTGAAGTGGTGACCGGCTATGTGAAAATTCGCCATAGCCATGCGCTGGTGAGCCTGAGCTTTCTGAAAAACCTGCGCCTGATTCTGGGCGAAGAACAGCTGGAAGGCAACTATAGCTTTTATGTGCTGGATAACCAGAACCTGCAGCAGCTGTGGGATTGGGATCATCGCAACCTGACCATTAAAGCGGGCAAAATGTATTTTGCGTTTAACCCGAAACTGTGCGTGAGCGAAATTTATCGCATGGAAGAAGTGACCGGCACCAAAGGCCGCCAGAGCAAAGGCGATATTAACACCCGCAACAACGGCGAACGCGCGAGCTGCGAAAGCGATGTGCTGCATTTTACCAGCACCACCACCAGCAAAAACCGCATTATTATTACCTGGCATCGCTATCGCCCGCCGGATTATCGCGATCTGATTAGCTTTACCGTGTATTATAAAGAAGCGCCGTTTAAAAACGTGACCGAATATGATGGCCAGGATGCGTGCGGCAGCAACAGCTGGAACATGGTGGATGTGGATCTGCCGCCGAACAAAGATGTGGAACCGGGCATTCTGCTGCATGGCCTGAAACCGTGGACCCAGTATGCGGTGTATGTGAAAGCGGTGACCCTGACCATGGTGGAAAACGATCATATTCGCGGCGCGAAAAGCGAAATTCTGTATATTCGCACCAACGCGAGCGTGCCGAGCATTCCGCTGGATGTGCTGAGCGCGAGCAACAGCAGCAGCCAGCTGATTGTGAAATGGAACCCGCCGAGCCTGCCGAACGGCAACCTGAGCTATTATATTGTGCGCTGGCAGCGCCAGCCGCAGGATGGCTATCTGTATCGCCATAACTATTGCAGCAAAGATAAAATTCCGATTCGCAAATATGCGGATGGCACCATTGATATTGAAGAAGTGACCGAAAACCCGAAAACCGAAGTGTGCGGCGGCGAAAAAGGCCCGTGCTGCGCGTGCCCGAAAACCGAAGCGGAAAAACAGGCGGAAAAAGAAGAAGCGGAATATCGCAAAGTGTTTGAAAACTTTCTGCATAACAGCATTTTTGTGCCGCGCCCGGAACGCAAACGCCGCGATGTGATGCAGGTGGCGAACACCACCATGAGCAGCCGCAGCCGCAACACCACCGCGGCGGATACCTATAACATTACCGATCCGGAAGAACTGGAAACCGAATATCCGTTTTTTGAAAGCCGCGTGGATAACAAAGAACGCACCGTGATTAGCAACCTGCGCCCGTTTACCCTGTATCGCATTGATATTCATAGCTGCAACCATGAAGCGGAAAAACTGGGCTGCAGCGCGAGCAACTTTGTGTTTGCGCGCACCATGCCGGCGGAAGGCGCGGATGATATTCCGGGCCCGGTGACCTGGGAACCGCGCCCGGAAAACAGCATTTTTCTGAAATGGCCGGAACCGGAAAACCCGAACGGCCTGATTCTGATGTATGAAATTAAATATGGCAGCCAGGTGGAAGATCAGCGCGAATGCGTGAGCCGCCAGGAATATCGCAAATATGGCGGCGCGAAACTGAACCGCCTGAACCCGGGCAACTATACCGCGCGCATTCAGGCGACCAGCCTGAGCGGCAACGGCAGCTGGACCGATCCGGTGTTTTTTTATGTGCAGGCGAAAACCGGCTATGAAAACTTTATTCATCTGATTATTGCGCTGCCGGTGGCGGTGCTGCTGATTGTGGGCGGCCTGGTGATTATGCTGTATGTGTTTCATCGCAAACGCAACAACAGCCGCCTGGGCAACGGCGTGCTGTATGCGAGCGTGAACCCGGAATATTTTAGCGCGGCGGATGTGTATGTGCCGGATGAATGGGAAGTGGCGCGCGAAAAAATTACCATGAGCCGCGAACTGGGCCAGGGCAGCTTTGGCATGGTGTATGAAGGCGTGGCGAAAGGCGTGGTGAAAGATGAACCGGAAACCCGCGTGGCGATTAAAACCGTGAACGAAGCGGCGAGCATGCGCGAACGCATTGAATTTCTGAACGAAGCGAGCGTGATGAAAGAATTTAACTGCCATCATGTGGTGCGCCTGCTGGGCGTGGTGAGCCAGGGCCAGCCGACCCTGGTGATTATGGAACTGATGACCCGCGGCGATCTGAAAAGCTATCTGCGCAGCCTGCGCCCGGAAATGGAAAACAACCCGGTGCTGGCGCCGCCGAGCCTGAGCAAAATGATTCAGATGGCGGGCGAAATTGCGGATGGCATGGCGTATCTGAACGCGAACAAATTTGTGCATCGCGATCTGGCGGCGCGCAACTGCATGGTGGCGGAAGATTTTACCGTGAAAATTGGCGATTTTGGCATGACCCGCGATATTTATGAAACCGATTATTATCGCAAAGGCGGCAAAGGCCTGCTGCCGGTGCGCTGGATGAGCCCGGAAAGCCTGAAAGATGGCGTGTTTACCACCTATAGCGATGTGTGGAGCTTTGGCGTGGTGCTGTGGGAAATTGCGACCCTGGCGGAACAGCCGTATCAGGGCCTGAGCAACGAACAGGTGCTGCGCTTTGTGATGGAAGGCGGCCTGCTGGATAAACCGGATAACTGCCCGGATATGCTGTTTGAACTGATGCGCATGTGCTGGCAGTATAACCCGAAAATGCGCCCGAGCTTTCTGGAAATTATTAGCAGCATTAAAGAAGAAATGGAACCGGGCTTTCGCGAAGTGAGCTTTTATTATAGCGAAGAAAACAAACTGCCGGAACCGGAAGAACTGGATCTGGAACCGGAAAACATGGAAAGCGTGCCGCTGGATCCGAGCGCGAGCAGCAGCAGCCTGCCGCTGCCGGATCGCCATAGCGGCCATAAAGCGGAAAACGGCCCGGGCCCGGGCGTGCTGGTGCTGCGCGCGAGCTTTGATGAACGCCAGCCGTATGCGCATATGAACGGCGGCCGCAAAAACGAACGCGCGCTGCCGCTGCCGCAGAGCAGCACCTGC

  19. Example: Insulin-like Growth Factor 1 Receptor (IGF1R) • Add EcoRI (GAATTC) at 5’ end and BamHI (GGATCC) at 3’ end. • GAATTCATGAAAAGCGGCAGCGGCGGCGGCAGCCCGACCAGCCTGTGGGGCCTGCTGTTTCTGAGCGCGGCGCTGAGCCTGTGGCCGACCAGCGGCGAAATTTGCGGCCCGGGCATTGATATTCGCAACGATTATCAGCAGCTGAAACGCCTGGAAAACTGCACCGTGATTGAAGGCTATCTGCATATTCTGCTGATTAGCAAAGCGGAAGATTATCGCAGCTATCGCTTTCCGAAACTGACCGTGATTACCGAATATCTGCTGCTGTTTCGCGTGGCGGGCCTGGAAAGCCTGGGCGATCTGTTTCCGAACCTGACCGTGATTCGCGGCTGGAAACTGTTTTATAACTATGCGCTGGTGATTTTTGAAATGACCAACCTGAAAGATATTGGCCTGTATAACCTGCGCAACATTACCCGCGGCGCGATTCGCATTGAAAAAAACGCGGATCTGTGCTATCTGAGCACCGTGGATTGGAGCCTGATTCTGGATGCGGTGAGCAACAACTATATTGTGGGCAACAAACCGCCGAAAGAATGCGGCGATCTGTGCCCGGGCACCATGGAAGAAAAACCGATGTGCGAAAAAACCACCATTAACAACGAATATAACTATCGCTGCTGGACCACCAACCGCTGCCAGAAAATGTGCCCGAGCACCTGCGGCAAACGCGCGTGCACCGAAAACAACGAATGCTGCCATCCGGAATGCCTGGGCAGCTGCAGCGCGCCGGATAACGATACCGCGTGCGTGGCGTGCCGCCATTATTATTATGCGGGCGTGTGCGTGCCGGCGTGCCCGCCGAACACCTATCGCTTTGAAGGCTGGCGCTGCGTGGATCGCGATTTTTGCGCGAACATTCTGAGCGCGGAAAGCAGCGATAGCGAAGGCTTTGTGATTCATGATGGCGAATGCATGCAGGAATGCCCGAGCGGCTTTATTCGCAACGGCAGCCAGAGCATGTATTGCATTCCGTGCGAAGGCCCGTGCCCGAAAGTGTGCGAAGAAGAAAAAAAAACCAAAACCATTGATAGCGTGACCAGCGCGCAGATGCTGCAGGGCTGCACCATTTTTAAAGGCAACCTGCTGATTAACATTCGCCGCGGCAACAACATTGCGAGCGAACTGGAAAACTTTATGGGCCTGATTGAAGTGGTGACCGGCTATGTGAAAATTCGCCATAGCCATGCGCTGGTGAGCCTGAGCTTTCTGAAAAACCTGCGCCTGATTCTGGGCGAAGAACAGCTGGAAGGCAACTATAGCTTTTATGTGCTGGATAACCAGAACCTGCAGCAGCTGTGGGATTGGGATCATCGCAACCTGACCATTAAAGCGGGCAAAATGTATTTTGCGTTTAACCCGAAACTGTGCGTGAGCGAAATTTATCGCATGGAAGAAGTGACCGGCACCAAAGGCCGCCAGAGCAAAGGCGATATTAACACCCGCAACAACGGCGAACGCGCGAGCTGCGAAAGCGATGTGCTGCATTTTACCAGCACCACCACCAGCAAAAACCGCATTATTATTACCTGGCATCGCTATCGCCCGCCGGATTATCGCGATCTGATTAGCTTTACCGTGTATTATAAAGAAGCGCCGTTTAAAAACGTGACCGAATATGATGGCCAGGATGCGTGCGGCAGCAACAGCTGGAACATGGTGGATGTGGATCTGCCGCCGAACAAAGATGTGGAACCGGGCATTCTGCTGCATGGCCTGAAACCGTGGACCCAGTATGCGGTGTATGTGAAAGCGGTGACCCTGACCATGGTGGAAAACGATCATATTCGCGGCGCGAAAAGCGAAATTCTGTATATTCGCACCAACGCGAGCGTGCCGAGCATTCCGCTGGATGTGCTGAGCGCGAGCAACAGCAGCAGCCAGCTGATTGTGAAATGGAACCCGCCGAGCCTGCCGAACGGCAACCTGAGCTATTATATTGTGCGCTGGCAGCGCCAGCCGCAGGATGGCTATCTGTATCGCCATAACTATTGCAGCAAAGATAAAATTCCGATTCGCAAATATGCGGATGGCACCATTGATATTGAAGAAGTGACCGAAAACCCGAAAACCGAAGTGTGCGGCGGCGAAAAAGGCCCGTGCTGCGCGTGCCCGAAAACCGAAGCGGAAAAACAGGCGGAAAAAGAAGAAGCGGAATATCGCAAAGTGTTTGAAAACTTTCTGCATAACAGCATTTTTGTGCCGCGCCCGGAACGCAAACGCCGCGATGTGATGCAGGTGGCGAACACCACCATGAGCAGCCGCAGCCGCAACACCACCGCGGCGGATACCTATAACATTACCGATCCGGAAGAACTGGAAACCGAATATCCGTTTTTTGAAAGCCGCGTGGATAACAAAGAACGCACCGTGATTAGCAACCTGCGCCCGTTTACCCTGTATCGCATTGATATTCATAGCTGCAACCATGAAGCGGAAAAACTGGGCTGCAGCGCGAGCAACTTTGTGTTTGCGCGCACCATGCCGGCGGAAGGCGCGGATGATATTCCGGGCCCGGTGACCTGGGAACCGCGCCCGGAAAACAGCATTTTTCTGAAATGGCCGGAACCGGAAAACCCGAACGGCCTGATTCTGATGTATGAAATTAAATATGGCAGCCAGGTGGAAGATCAGCGCGAATGCGTGAGCCGCCAGGAATATCGCAAATATGGCGGCGCGAAACTGAACCGCCTGAACCCGGGCAACTATACCGCGCGCATTCAGGCGACCAGCCTGAGCGGCAACGGCAGCTGGACCGATCCGGTGTTTTTTTATGTGCAGGCGAAAACCGGCTATGAAAACTTTATTCATCTGATTATTGCGCTGCCGGTGGCGGTGCTGCTGATTGTGGGCGGCCTGGTGATTATGCTGTATGTGTTTCATCGCAAACGCAACAACAGCCGCCTGGGCAACGGCGTGCTGTATGCGAGCGTGAACCCGGAATATTTTAGCGCGGCGGATGTGTATGTGCCGGATGAATGGGAAGTGGCGCGCGAAAAAATTACCATGAGCCGCGAACTGGGCCAGGGCAGCTTTGGCATGGTGTATGAAGGCGTGGCGAAAGGCGTGGTGAAAGATGAACCGGAAACCCGCGTGGCGATTAAAACCGTGAACGAAGCGGCGAGCATGCGCGAACGCATTGAATTTCTGAACGAAGCGAGCGTGATGAAAGAATTTAACTGCCATCATGTGGTGCGCCTGCTGGGCGTGGTGAGCCAGGGCCAGCCGACCCTGGTGATTATGGAACTGATGACCCGCGGCGATCTGAAAAGCTATCTGCGCAGCCTGCGCCCGGAAATGGAAAACAACCCGGTGCTGGCGCCGCCGAGCCTGAGCAAAATGATTCAGATGGCGGGCGAAATTGCGGATGGCATGGCGTATCTGAACGCGAACAAATTTGTGCATCGCGATCTGGCGGCGCGCAACTGCATGGTGGCGGAAGATTTTACCGTGAAAATTGGCGATTTTGGCATGACCCGCGATATTTATGAAACCGATTATTATCGCAAAGGCGGCAAAGGCCTGCTGCCGGTGCGCTGGATGAGCCCGGAAAGCCTGAAAGATGGCGTGTTTACCACCTATAGCGATGTGTGGAGCTTTGGCGTGGTGCTGTGGGAAATTGCGACCCTGGCGGAACAGCCGTATCAGGGCCTGAGCAACGAACAGGTGCTGCGCTTTGTGATGGAAGGCGGCCTGCTGGATAAACCGGATAACTGCCCGGATATGCTGTTTGAACTGATGCGCATGTGCTGGCAGTATAACCCGAAAATGCGCCCGAGCTTTCTGGAAATTATTAGCAGCATTAAAGAAGAAATGGAACCGGGCTTTCGCGAAGTGAGCTTTTATTATAGCGAAGAAAACAAACTGCCGGAACCGGAAGAACTGGATCTGGAACCGGAAAACATGGAAAGCGTGCCGCTGGATCCGAGCGCGAGCAGCAGCAGCCTGCCGCTGCCGGATCGCCATAGCGGCCATAAAGCGGAAAACGGCCCGGGCCCGGGCGTGCTGGTGCTGCGCGCGAGCTTTGATGAACGCCAGCCGTATGCGCATATGAACGGCGGCCGCAAAAACGAACGCGCGCTGCCGCTGCCGCAGAGCAGCACCTGCGGATCC

  20. Example: Insulin-like Growth Factor 1 Receptor (IGF1R) • Add EcoRI (GAATTC) at 5’ end and BamHI (GGATCC) at 3’ end. • GAATTCATGAAAAGCGGCAGCGGCGGCGGCAGCCCGACCAGCCTGTGGGGCCTGCTGTTTCTGAGCGCGGCGCTGAGCCTGTGGCCGACCAGCGGCGAAATTTGCGGCCCGGGCATTGATATTCGCAACGATTATCAGCAGCTGAAACGCCTGGAAAACTGCACCGTGATTGAAGGCTATCTGCATATTCTGCTGATTAGCAAAGCGGAAGATTATCGCAGCTATCGCTTTCCGAAACTGACCGTGATTACCGAATATCTGCTGCTGTTTCGCGTGGCGGGCCTGGAAAGCCTGGGCGATCTGTTTCCGAACCTGACCGTGATTCGCGGCTGGAAACTGTTTTATAACTATGCGCTGGTGATTTTTGAAATGACCAACCTGAAAGATATTGGCCTGTATAACCTGCGCAACATTACCCGCGGCGCGATTCGCATTGAAAAAAACGCGGATCTGTGCTATCTGAGCACCGTGGATTGGAGCCTGATTCTGGATGCGGTGAGCAACAACTATATTGTGGGCAACAAACCGCCGAAAGAATGCGGCGATCTGTGCCCGGGCACCATGGAAGAAAAACCGATGTGCGAAAAAACCACCATTAACAACGAATATAACTATCGCTGCTGGACCACCAACCGCTGCCAGAAAATGTGCCCGAGCACCTGCGGCAAACGCGCGTGCACCGAAAACAACGAATGCTGCCATCCGGAATGCCTGGGCAGCTGCAGCGCGCCGGATAACGATACCGCGTGCGTGGCGTGCCGCCATTATTATTATGCGGGCGTGTGCGTGCCGGCGTGCCCGCCGAACACCTATCGCTTTGAAGGCTGGCGCTGCGTGGATCGCGATTTTTGCGCGAACATTCTGAGCGCGGAAAGCAGCGATAGCGAAGGCTTTGTGATTCATGATGGCGAATGCATGCAGGAATGCCCGAGCGGCTTTATTCGCAACGGCAGCCAGAGCATGTATTGCATTCCGTGCGAAGGCCCGTGCCCGAAAGTGTGCGAAGAAGAAAAAAAAACCAAAACCATTGATAGCGTGACCAGCGCGCAGATGCTGCAGGGCTGCACCATTTTTAAAGGCAACCTGCTGATTAACATTCGCCGCGGCAACAACATTGCGAGCGAACTGGAAAACTTTATGGGCCTGATTGAAGTGGTGACCGGCTATGTGAAAATTCGCCATAGCCATGCGCTGGTGAGCCTGAGCTTTCTGAAAAACCTGCGCCTGATTCTGGGCGAAGAACAGCTGGAAGGCAACTATAGCTTTTATGTGCTGGATAACCAGAACCTGCAGCAGCTGTGGGATTGGGATCATCGCAACCTGACCATTAAAGCGGGCAAAATGTATTTTGCGTTTAACCCGAAACTGTGCGTGAGCGAAATTTATCGCATGGAAGAAGTGACCGGCACCAAAGGCCGCCAGAGCAAAGGCGATATTAACACCCGCAACAACGGCGAACGCGCGAGCTGCGAAAGCGATGTGCTGCATTTTACCAGCACCACCACCAGCAAAAACCGCATTATTATTACCTGGCATCGCTATCGCCCGCCGGATTATCGCGATCTGATTAGCTTTACCGTGTATTATAAAGAAGCGCCGTTTAAAAACGTGACCGAATATGATGGCCAGGATGCGTGCGGCAGCAACAGCTGGAACATGGTGGATGTGGATCTGCCGCCGAACAAAGATGTGGAACCGGGCATTCTGCTGCATGGCCTGAAACCGTGGACCCAGTATGCGGTGTATGTGAAAGCGGTGACCCTGACCATGGTGGAAAACGATCATATTCGCGGCGCGAAAAGCGAAATTCTGTATATTCGCACCAACGCGAGCGTGCCGAGCATTCCGCTGGATGTGCTGAGCGCGAGCAACAGCAGCAGCCAGCTGATTGTGAAATGGAACCCGCCGAGCCTGCCGAACGGCAACCTGAGCTATTATATTGTGCGCTGGCAGCGCCAGCCGCAGGATGGCTATCTGTATCGCCATAACTATTGCAGCAAAGATAAAATTCCGATTCGCAAATATGCGGATGGCACCATTGATATTGAAGAAGTGACCGAAAACCCGAAAACCGAAGTGTGCGGCGGCGAAAAAGGCCCGTGCTGCGCGTGCCCGAAAACCGAAGCGGAAAAACAGGCGGAAAAAGAAGAAGCGGAATATCGCAAAGTGTTTGAAAACTTTCTGCATAACAGCATTTTTGTGCCGCGCCCGGAACGCAAACGCCGCGATGTGATGCAGGTGGCGAACACCACCATGAGCAGCCGCAGCCGCAACACCACCGCGGCGGATACCTATAACATTACCGATCCGGAAGAACTGGAAACCGAATATCCGTTTTTTGAAAGCCGCGTGGATAACAAAGAACGCACCGTGATTAGCAACCTGCGCCCGTTTACCCTGTATCGCATTGATATTCATAGCTGCAACCATGAAGCGGAAAAACTGGGCTGCAGCGCGAGCAACTTTGTGTTTGCGCGCACCATGCCGGCGGAAGGCGCGGATGATATTCCGGGCCCGGTGACCTGGGAACCGCGCCCGGAAAACAGCATTTTTCTGAAATGGCCGGAACCGGAAAACCCGAACGGCCTGATTCTGATGTATGAAATTAAATATGGCAGCCAGGTGGAAGATCAGCGCGAATGCGTGAGCCGCCAGGAATATCGCAAATATGGCGGCGCGAAACTGAACCGCCTGAACCCGGGCAACTATACCGCGCGCATTCAGGCGACCAGCCTGAGCGGCAACGGCAGCTGGACCGATCCGGTGTTTTTTTATGTGCAGGCGAAAACCGGCTATGAAAACTTTATTCATCTGATTATTGCGCTGCCGGTGGCGGTGCTGCTGATTGTGGGCGGCCTGGTGATTATGCTGTATGTGTTTCATCGCAAACGCAACAACAGCCGCCTGGGCAACGGCGTGCTGTATGCGAGCGTGAACCCGGAATATTTTAGCGCGGCGGATGTGTATGTGCCGGATGAATGGGAAGTGGCGCGCGAAAAAATTACCATGAGCCGCGAACTGGGCCAGGGCAGCTTTGGCATGGTGTATGAAGGCGTGGCGAAAGGCGTGGTGAAAGATGAACCGGAAACCCGCGTGGCGATTAAAACCGTGAACGAAGCGGCGAGCATGCGCGAACGCATTGAATTTCTGAACGAAGCGAGCGTGATGAAAGAATTTAACTGCCATCATGTGGTGCGCCTGCTGGGCGTGGTGAGCCAGGGCCAGCCGACCCTGGTGATTATGGAACTGATGACCCGCGGCGATCTGAAAAGCTATCTGCGCAGCCTGCGCCCGGAAATGGAAAACAACCCGGTGCTGGCGCCGCCGAGCCTGAGCAAAATGATTCAGATGGCGGGCGAAATTGCGGATGGCATGGCGTATCTGAACGCGAACAAATTTGTGCATCGCGATCTGGCGGCGCGCAACTGCATGGTGGCGGAAGATTTTACCGTGAAAATTGGCGATTTTGGCATGACCCGCGATATTTATGAAACCGATTATTATCGCAAAGGCGGCAAAGGCCTGCTGCCGGTGCGCTGGATGAGCCCGGAAAGCCTGAAAGATGGCGTGTTTACCACCTATAGCGATGTGTGGAGCTTTGGCGTGGTGCTGTGGGAAATTGCGACCCTGGCGGAACAGCCGTATCAGGGCCTGAGCAACGAACAGGTGCTGCGCTTTGTGATGGAAGGCGGCCTGCTGGATAAACCGGATAACTGCCCGGATATGCTGTTTGAACTGATGCGCATGTGCTGGCAGTATAACCCGAAAATGCGCCCGAGCTTTCTGGAAATTATTAGCAGCATTAAAGAAGAAATGGAACCGGGCTTTCGCGAAGTGAGCTTTTATTATAGCGAAGAAAACAAACTGCCGGAACCGGAAGAACTGGATCTGGAACCGGAAAACATGGAAAGCGTGCCGCTGGATCCGAGCGCGAGCAGCAGCAGCCTGCCGCTGCCGGATCGCCATAGCGGCCATAAAGCGGAAAACGGCCCGGGCCCGGGCGTGCTGGTGCTGCGCGCGAGCTTTGATGAACGCCAGCCGTATGCGCATATGAACGGCGGCCGCAAAAACGAACGCGCGCTGCCGCTGCCGCAGAGCAGCACCTGCGGATCC

  21. Designing Amplification Oligos ~5’ End 5’GAATTCATGAAAAGCGGCAGCGGCGGCGGC3’ 3’CTTAAGTACTTTTCGCCGTCGCCGCCGCCG5’ ~*You need an available 3’OH, so for this end you make a primer against the antisense strand. 5’GAATTCATGAAAAGCGGCAGCGGCGGCGGC3’ 5’GAATTCATGAAAAGCGGCAGCGGC3’OH 3’CTTAAGTACTTTTCGCCGTCGCCGCCGCCG5’

  22. Designing Amplification Oligos ~3’ End 5’TGCCGCTGCCGCAGAGCAGCACCTGCGGATCC3’ 3’ACGGCGACGGCGTCTCGTCGTGGACGCCTAGG5’ ~Again, you need a 3’OH so this time make a primer against the sense strand. 5’TGCCGCTGCCGCAGAGCAGCACCTGCGGATCC3’ HO3’GGCGTCTCGTCGTGGACGCCTAGG5’ 3’ACGGCGACGGCGTCTCGTCGTGGACGCCTAGG5’

  23. Designing Amplification Oligos • Primers need to be anywhere from 18-25 nucleotides. • Don’t include the restriction site or Kozak sequence as part of your 18-25 nucleotides for the primer. • Should contain at least 50% GC composition. • Must flank the entire CODING sequence.

More Related