740 likes | 1.09k Views
NKNU phys. Master Thesis. The measurement and study of femto-second gain dynamics of GaAs single quantum well semiconductor laser amplifiers. 國立彰化師大物理系博士班入學口試. Contents. Chap.1 Introduction Chap.2 GaAs SLA Chap.3 Theory Chap.4 Laser system Chap.5 Gain dynamics Chap.6 Summary
E N D
NKNU phys. Master Thesis The measurement and study of femto-second gain dynamics of GaAs single quantum well semiconductor laser amplifiers 國立彰化師大物理系博士班入學口試
Contents • Chap.1 Introduction • Chap.2 GaAs SLA • Chap.3 Theory • Chap.4 Laser system • Chap.5 Gain dynamics • Chap.6 Summary • Appendix
SLA advantages Small volume<500 micro-meter Short response time<200ps High gain>30dB Broad band>5T Hz Support: NSC87-2112-M-017-001 NSC87-2112-M-017-002 Follow up:NSC87-2112-M-017-003 Advantages & support
1.1 Background 1.2 Study focus Chap.1 Introduction
Experiment ~1980:linear gain 1980~fs laser Nonlinear gain MIT: ps pump probe technique & TDI UC Davis: fs Nonlinear index ~MIT Theory 1989:AT&T 1992:UC Davis 1992:TFL(Sweden) Domestic researches 1.1 Background
2.1 Introduction 2.2 SLD830 2.3 Mounting system and circuit box 2.4 SLD830 measurement Chap.2 GaAs SLA
GaAs Direct band-gap Gain: LD,LED & SLA Absorption: optical detector: Photo Diode SLD USA Sarnoff Inc. Single Quantum Well Double Hetero-junction Structure Peak wavelength: 825nm Striped angle:5 deg. Active layer:0.08 micro-meter P-side down 830 <GaAs band-gap wavelength=870nm 2.2 SLD830
(a)樣品裝載; (b)頂住的螺絲 (c)SMA接頭; (d)基座; (e)基座裝載; (f)絕緣夾層; (g)載台支撐棒; (h)圓形壓版。
3.1 Introduction 3.2 Pump probe technique 3.3 Semi-phenomenological model Chap.3 Theory Models
3.1 Introduction In semiconductors: two level energy model+ energy conservation law + momentum conservation law+ boundary conditions Where: mc: electron effective mass in conduction band mv: hole effective mass in valance band Ec: bottom energy of conduction band Ev: top energy of valance band Eg( energy gap)=Ec-Ev
Optical joint density of states Fermi Golden Rule Lorentzian line-shape function Well known equations
where: h(t): resonance function G(2)(t):convolution of h(t) S(τ): auto-correlation function of G(2)(t) 3.2 Pump probe technique
1989 AT&T G.P. Agrawal where: Vg: group velocity g(N): gain α: Line-width Enhancement Factor 3.3 Semi-phenomenological model
4.1 Introduction 4.2 Pumping source:NdYVO4 Laser 4.3 Ultra-short mode-locking Ti: sapphire Laser 4.4 Pulse-width and bandwidth Chap.4 Laser System
Ultra fast Mode-locking fs pulse laser 4.1 Introduction
Power>5W Wavelength: 532nm Quasi single frequency:<1nm Spot size:2.25mm Beam waist:1/e^2,beam divergence<0.5mrad Polarization: vertical: parallel>100:1 4.2 Pumping source:NdYVO4 Laser
Wavelength tunable:730~850nm Repetition rate:76MHz CW power:800mW Mode-locking power:600mW Peak power:50KW Spot size:0.8mm Full angle divergence:1.5mrad Polarization:TEM00,p polarization 4.3 Ultra-short mode-locking Ti: sapphire Laser
Auto-correlator Femto-chrome FR-103XL
Line-width=10nm transform limited OSA:HP 71451B
5.1 Introduction 5.2 Pump probe system 5.3 Gain dynamics 5.4 Experiment result Chap.5 Gain Dynamics
Pump probe 3 factors =pump beam + probe beam +time delay Two beams pump probe/three beams Parallel polarization/orthogonal polarization Refraction /reflection 5.1 Introduction
5.2 Pump probe system • System requirements • Experiment sketch
Pump & probe power tunable Pump & probe polarization tunable Wavelength tunable SLA driving current tunable Time delay tunable Alignment requirement Fine tuning and double check System requirements
5.3 Gain dynamics fixed alternative