1 / 11

Volume Data Analysis and Visualization

Volume Data Analysis and Visualization. Stefan Bruckner Department of Informatics University of Bergen. A Data-Driven World …. VISUAL KNOWLEDGE DISCOVERY make sense of mountains of data. Biology. MEDICINE. EARTH SCIENCES. Engineering. Mission Statement. 1. 3. 2.

amelie
Download Presentation

Volume Data Analysis and Visualization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Volume Data Analysis and Visualization Stefan Bruckner Department of InformaticsUniversity of Bergen

  2. A Data-Driven World … VISUAL KNOWLEDGE DISCOVERYmake sense of mountains of data Biology MEDICINE EARTH SCIENCES Engineering

  3. Mission Statement 1 3 2 Effective Navigation in Spatial Data Collections Real-Time Visualization of Large Datasets • Distributed Collaboration and Communication GENERAL METHODOLOGY ALGORITHMIC SOLUTIONS TECHNICAL FRAMEWORK Enablevisual knowledge discovery inlarge spatial data collections

  4. Selected Success Stories Volume Data analysis and visualization

  5. Volume Analysis • Identification of features in volumetric data, e.g. seismic volumes, medical imaging data, etc. [1-5] • Find regions in parameter space which correspond to distinct spatial structures delineating blood vessels in angiography removing artifacts in industrial CT

  6. Volume Exploration • Finding of patterns in large spatial data collections [8-10] • Interactive tools for visual exploration, navigation, and analysis • Categorization of the output space using spatial similarity measures • Applications: fluid simulation, neurobiology, medicine, etc.

  7. Smart Interaction • AngioVis: advanced visualization for improved diagnosis of vascular decease [11-13] • Next-generation radiology workstation, in daily clinical use at the Vienna General Hospital • LiveSync: synchronized interaction with 2D and 3D images in medical workstations [14-17] • Integrated into AFGA HealthCare software, several granted patents

  8. Illustrative Visualization • Interactive presentation of complex 3D datasets in an easily-understandable way based on illustration techniques [18-25] • GPU-based methods for generating cutaway views, exploded views, stylized shading, etc. • VolumeShop software framework: rapid-prototyping toolkit for volume visualization & remote rendering

  9. Real-Time Rendering • Real-time realistic volume visualization from live 4D ultrasound data [26-28] • High-quality rendering with at a fraction of the cost of previous methods • Research and technology transfer project with GE Healthcare, available on Voluson US scanners

  10. References (1) [1] M. Haidacher, S. Bruckner, A. Kanitsar, and M. E. Gröller, “Information-based transfer functions for multimodal visualization,” in Proceedings of Visual Computing for Biomedicine 2008, pp. 101–108, 2008. [2] M. Haidacher, D. Patel, S. Bruckner, A. Kanitsar, and M. E. Gröller, “Volume visualization based on statistical transfer-function spaces,” in Proceedings of IEEE Pacific Visualization 2010, pp. 17–24, 2010. [3] D. Patel, S. Bruckner, I. Viola, and M. E. Gröller, “Seismic volume visualization for horizon extraction,” in Proceedings of IEEE Pacific Visualization 2010, pp. 73–80, 2010. [4] S. Bruckner and T. Möller, “Isosurface similarity maps,” Computer Graphics Forum, vol. 29, no. 3, pp. 773–782, 2010. EUROVIS 2010 BEST PAPER AWARD. [5] M. Haidacher, S. Bruckner, and M. E. Gröller, “Volume analysis using multimodal surface similarity,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 6, pp. 1969–1978, 2011. [6] S. Bruckner, V. Šoltészová, M. Gröller, J. Hladuvka, K. Bühler, J. Y. Yu, and B. J. Dickson, “BrainGazer – Visual queries for neurobiology research,” IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 1497–1504, 2009. [7] S. Bruckner and M. E. Gröller, “Instant volume visualization using maximum intensity difference accumulation,” Computer Graphics Forum, vol. 28, no. 3, pp. 775–782, 2009. [8] S. Bruckner and T. Möller, “Result-driven exploration of simulation parameter spaces for visual effects design,” IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 1467–1475, 2010. [9] P. Mindek, S. Bruckner, M. E. Gröller, “Contextual Snapshots: Enriched Visualization with Interactive Spatial Annotations,” in Proceedings of the Spring Conference on Computer Graphics 2013. SCCG 2013 BEST PAPER AWARD. [10] J. Schmidt, M. E. Gröller, and S. Bruckner, “VAICo: Visual Analysis for Image Comparison,“ IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 6, pp. 2090-2099, 2013. [11] G. Mistelbauer, H. Bouzari, R. Schernthaner, I. Baclija, A. Köchl, S. Bruckner, M. Sramek, M. E. Gröller, “Smart Super Views – A Knowledge-Assisted Interface for Medical Visualization,” in Proceedings of IEEE VAST 2012, pp. 163–172, 2012. [12] G. Mistelbauer, A. Morar, A. Varchola, R. Schernthaner, I. Baclija, A. Köchl, A. Kanitsar, S. Bruckner, M. E. Gröller, “Vessel Visualization using Curvicircular Feature Aggregation,“ Computer Graphics Forum, vol. 32, no. 3, pp. 231–240, 2013. [13] T. Auzinger, G. Mistelbauer, I. Baclija, R. Schernthaner, A. Köchl, M. Wimmer, M. E. Gröller, and S. Bruckner, “Vessel Visualization using Curved Surface Reformation,“ IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 6, pp. 2858–2867, 2013. [14] P. Kohlmann, S. Bruckner, A. Kanitsar, and M. E. Gröller, “LiveSync: Deformed viewing spheres for knowledge-based navigation,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1544–1551, 2007.

  11. References (2) [15] S. Bruckner, P. Kohlmann, A. Kanitsar, and M. E. Gröller, “Integrating volume visualization techniques into medical applications,” in Proceedings of the International Symposium on Biomedical Imaging 2008, pp. 820–823, 2008. [16] P. Kohlmann, S. Bruckner, A. Kanitsar, and M. E. Gröller, “LiveSync++: Enhancements of an interaction metaphor,” in Proceedings of Graphics Interface 2008, pp. 81–88, 2008. [17] P. Kohlmann, S. Bruckner, A. Kanitsar, and M. E. Gröller, “Contextual picking of volumetric structures,” in Proceedings of the IEEE Pacific Visualization 2009, pp. 185–192, 2009. [18]S. Bruckner and M. E. Gröller, “VolumeShop: An interactive system for direct volume illustration,” in Proceedings of IEEE Visualization 2005, pp. 671–678, 2005. [19] S. Bruckner, S. Grimm, A. Kanitsar, and M. E. Gröller, “Illustrative context-preserving exploration of volume data,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 6, pp. 1559–1569, 2006. [20] S. Bruckner and M. E. Gröller, “Exploded views for volume data,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 5, pp. 1077–1084, 2006. [21] S. Bruckner and M. E. Gröller, “Style transfer functions for illustrative volume rendering,” Computer Graphics Forum, vol. 26, no. 3, pp. 715–724, 2007. EUROGRAPHICS 2007 3RD BEST PAPER AWARD. [22] P. Rautek, S. Bruckner, and M. E. Gröller, “Semantic layers for illustrative volume rendering,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1336–1343, 2007. [23] S. Bruckner and M. E. Gröller, “Enhancing depth-perception with flexible volumetric halos,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1344–1351, 2007. [24] P. Rautek, S. Bruckner, and M. E. Gröller, “Interaction-dependent semantics for illustrative volume rendering,” Computer Graphics Forum, vol. 27, no. 3, pp. 847–854, 2008. [25] S. Bruckner, P. Rautek, I. Viola, M. Roberts, M. C. Sousa, and M. E. Gröller, “Hybrid visibility compositing and masking for illustrative rendering,” Computers & Graphics, vol. 34, no. 4, pp. 361–369, 2010. [26] V. Šoltészová, D. Patel, S. Bruckner, and I. Viola, “A multidirectional occlusion shading model for direct volume rendering,” Computer Graphics Forum, vol. 29, no. 3, pp. 883–891, 2010. [27] T. Ropinski, S. Diepenbrock, S. Bruckner, K. Hinrichs, and M. E. Gröller, “Unified Boundary-Aware Texturing for Interactive Volume Rendering,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 11, pp. 1942–1955, 2012. [28] D. Patel, V. Šoltészová, J. M. Nordbotten, and S. Bruckner, “Instant Convolution Shadows for Volumetric Detail Mapping,“ ACM Transactions on Graphics, vol. 32, no. 5, pp. 154:1–154:18, 2013.

More Related