620 likes | 867 Views
A 40 mV /4 uW CMOS Colpitts Oscillator with Additional Positive Feedback at 2.12 GHz. Rodrigo Eduardo Rottava Fernando Rangel de Sousa. Outline. Introduction Proposed Topology Analysis Design Post-layout Simulations Conclusions. Introduction.
E N D
A 40 mV/4 uW CMOS ColpittsOscillatorwithAdditional Positive Feedback at 2.12 GHz Rodrigo Eduardo Rottava Fernando Rangel de Sousa
Outline • Introduction • ProposedTopology • Analysis • Design • Post-layoutSimulations • Conclusions
Introduction Theaim: newtopology to reducepowerconsumptionandsupplyvoltageofradio-frequencyoscillators.
Introduction Theaim: newtopology to reducepowerconsumptionandsupplyvoltageofradio-frequencyoscillators. How: to add a new positive feedback technique in a classicalColpittsoscillator.
Introduction Theaim: newtopology to reducepowerconsumptionandsupplyvoltageofradio-frequencyoscillators. How: to add a new positive feedback technique in a classicalColpittsoscillator. Applications: WBAN’s (ultra-lowpowerconsumption).
Outline • Introduction • ProposedTopology • Analysis • Design • Post-layoutSimulations • Conclusions
ColpittsOscillator OscillationCriteria: Highlevelrepresentation
ColpittsOscillator OscillationCriteria: Highlevelrepresentation ColpittsOscillator
ColpittsOscillator OscillationCriteria: Highlevelrepresentation ColpittsOscillator
Adding Feedback Source admittanceLg:
Adding Feedback Source admittanceLg:
Adding Feedback Source admittanceLg: Byusingthosetwofeedback sources it is possible to reducethe bias current. Proposedtopology.
Outline • Introduction • ProposedTopology • Analysis • Design • Post-layoutSimulations • Conclusions
Small-SignalRepresentation Proposedtopology
Small-SignalRepresentation CircuitLosses Proposedtopology Small-signalrepresentation
Small-SignalRepresentation CircuitLosses Proposedtopology Small-signalrepresentation
Small-SignalRepresentation CircuitLosses Proposedtopology Small-signalrepresentation
Small-SignalRepresentation CircuitLosses Proposedtopology Small-signalrepresentation
Small-SignalRepresentation CircuitLosses Proposedtopology Small-signalrepresentation
Requiredgms Total source transconductance: Total draintransconductance: CircuitLosses 1stoscillationcriterion: Therequiredgmsin order to start-uptheoscillator:
OscillationFrequency 2ndoscillationcriterion: Theoscillationfrequency is givenby: where:
Reducingtherequiredgms Requiredgms:
Reducingtherequiredgms Requiredgms: Twostrategies to reducetherequiredgmswerestudied.
Reducingtherequiredgms Requiredgms: Twostrategies to reducetherequiredgmswerestudied. a) Optimum capacitor ratio:
Reducingtherequiredgms Requiredgms: b) Gateinductivedegeneration:
Reducingtherequiredgms Requiredgms: b) Gateinductivedegeneration: For |α|, |β| < 0
Reducingtherequiredgms Requiredgms: b) Gateinductivedegeneration: For |α|, |β| < 0 Nevertheless, for
EffectofLg EffectofLgonthe input conductanceofthe one-port network.
EffectofLg EffectofLgonthe input conductanceofthe one-port network.
Outline • Introduction • ProposedTopology • Analysis • Design • Post-layoutSimulations • Conclusions
Design Flow DC Characterization
Design Flow DC Characterization GateInductor
Design Flow DC Characterization GateInductor OptimumCapacitiveRatio
Design Flow DC Characterization GateInductor OptimumCapacitiveRatio Minimumgms?
Design Flow DC Characterization GateInductor OptimumCapacitiveRatio Minimumgms? No Decrease VDD
Design Flow DC Characterization GateInductor OptimumCapacitiveRatio Minimumgms? No GateInductor Yes OptimizedLow-VoltageOscillator
Specifications • Oscillatorat 2.4 GHz in CMOS 130 nmusing a zero VTH transistor. • Buffer in order to adapte theoscillatorwiththespectrumanalyzer.
Specifications • Oscillatorat 2.4 GHz in CMOS 130 nmusing a zero VTH transistor. • Buffer in order to adapte theoscillatorwiththespectrumanalyzer. Oscillator Core
Specifications • Oscillatorat 2.4 GHz in CMOS 130 nmusing a zero VTH transistor. • Buffer in order to adapte theoscillatorwiththespectrumanalyzer. Buffer
Specifications • Oscillatorat 2.4 GHz in CMOS 130 nmusing a zero VTH transistor. • Buffer in order to adapte theoscillatorwiththespectrumanalyzer. SpectrumAnalyzer
Final Layout Technology: IBM 130 nm. M1 = Zero-VTH transistor Area: 0.9 mm² Lg L1 LRFC
Final Layout Technology: IBM 130 nm. M1 = Zero-VTH transistor Area: 0.9 mm² M1 IB M2
Final Layout Technology: IBM 130 nm. M1 = Zero-VTH transistor Area: 0.9 mm² VDD GND RF OUT B1 B2
Outline • Introduction • ProposedTopology • Analysis • Design • Post-layoutSimulations • Conclusions
Post-layoutSimulation ID Vout TransientSimulation (loadedoscillator) Output voltageanddraincurrent
Post-layoutSimulation 30 mV ID Vout TransientSimulation (loadedoscillator) Output voltageanddraincurrent
Post-layoutSimulation VDD ID = 4 µW ID Vout TransientSimulation (loadedoscillator) Output voltageanddraincurrent