220 likes | 467 Views
ROBÓTICA (ROB74) – AULA 5. CINEMÁTICA DIFERENCIAL DE MANIPULADORES SERIAIS PROF.: Leo Schirmer. PROGRAMA. CINEMÁTICA DIFERENCIAL DE MANIPULADORES SERIAIS Problemática da Cinemática Diferencial Jacobiano Direto Jacobiano Inverso Exemplos Singularidades. Problemática.
E N D
ROBÓTICA (ROB74) – AULA 5 CINEMÁTICA DIFERENCIAL DE MANIPULADORES SERIAIS PROF.: Leo Schirmer
PROGRAMA • CINEMÁTICA DIFERENCIAL DE MANIPULADORES SERIAIS • Problemática da Cinemática Diferencial • Jacobiano Direto • Jacobiano Inverso • Exemplos • Singularidades
Problemática • Qual a relação existente entre as derivadas (velocidades, aceleração, jerk) dos eixos de juntas em relação as derivadas das coordenadas do efetuador final? • Se a extremidade da mão deve descrever um certo deslocamento (incremento) no espaço a seis coordenadas durante um dado intervalo de tempo, que deslocamentos (incrementos) devem ter as diversas juntas?
Caminho e Trajetória • No controle de robôs é mais simples definir “caminhos” do que “trajetórias”!!! • CAMINHO: Conjunto de pontos no espaço (operacional ou das juntas) que deve ser percorrido em uma determinada ordem; • TRAJETÓRIA: Define um caminho levando em conta restrições temporais, ou seja, são definidos intervalos de tempo para a evolução entre duas configurações sucessivas;
Jacobiano • Relaciona as velocidades no espaço das juntas com velocidades no espaço cartesiano
Jacobiano • EX: cinemática direta robô 6DOF – denominada h
Jacobiano OBS: não é uma função constante, é função de q!!!!
Jacobiano • Na cinemática direta
Jacobiano - Interpretação • Contribuição individual da velocidade de cada junta para a velocidade no efetuador final
Jacobiano - Interpretação • A matriz jacobiana pode ser decomposta da seguinte forma: • JPi(3x1) representa a parcela de contribuição de cada junta qi na velocidade linear; • JOi(3x1) representa a parcela de contribuição de cada junta qi na velocidade angular
Jacobiano • Também pode ser obtido geometricamente por: • Sendo: • zi-1 é a terceira coluna de 0Ri-1 • p é o vetor posição da matriz 0Tn • pi-1 é o vetor posição da matriz 0Ti-1
Jacobiano • Resolvendo os produtos vetoriais, tem-se: • E o Jacobiano será:
Jacobiano Inverso • Simplesmente a matriz inversa do Jacobiano? • OBS: nem sempre é verdade, porque o jacobiano pode não ser quadrado (muito comum)!!! • Três Alternativas: • Diferenciação da cinemática inversa • Inversa Comum: • Pseudo-Inversa:
Jacobiano Inverso – EX: RR planar e RR 3D • Pela Inversa (RR planar): • Diferenciação Cin. Inversa (RR 3D):
Singularidades • O Jacobiano inverso mesmo quando identificado por uma expressão analítica, pode nem sempre ficar definido para todos os valores das variáveis de junto (configurações do manipulador)!!! • EX:
Singularidades • Exemplos:
Singularidades • Fisicamente: é uma situação (configuração do robô) na qual seria necessário impor velocidades infinitamente altas numa ou mais juntas para manter determinadas velocidades no espaço operacional. • Se o Jacobiano Inverso não tem definição numérica então o Jacobiano Direto é singular (terá determinante nulo)!!!
Singularidades • As singularidade apresentadas para o caso RR planar e RR 3D dizem respeito a situações limites do espaço de trabalho, porém ... • OBS: para manipuladores com mais graus de liberdade é possível encontrar singularidades no interior do espaço de trabalho – normalmente dizem respeito a alinhamento de elos interiores, como cotovelos, por exemplo. ESTAS SINGULARIDADES REPRESENTAM SÉRIOS PROBLEMAS NO CONTROLE DE MANIPULADORES!!!!