1 / 31

Priority Queues, Heaps

Priority Queues, Heaps. CS3240, L. grewe. Goals. Describe a priority queue at the logical level and implement a priority queue as a list Describe the shape and order property of a heap and implement a heap in a nonlinked tree representation in an array

amos-baker
Download Presentation

Priority Queues, Heaps

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Priority Queues, Heaps • CS3240, L. grewe

  2. Goals • Describe a priority queue at the logical level and implement a priority queue as a list • Describe the shape and order property of a heap and implement a heap in a nonlinked tree representation in an array • Implement a priority queue as a heap • Compare the implementations of a priority queue using a heap, a linked list, and a binary search tree

  3. Priority Queue Priority Queue An ADT in which only the item with the highest priority can be accessed

  4. Priority Queue Items on a priority queue are made up of <data, priority> pairs Can you think of how a priority queue might be implemented as An unsorted list? An array-based sorted list? A linked sorted list? A binary search tree?

  5. Heaps • Heap • A complete binary tree, each of whose elements contains a value that is greater than or equal to the value of each of its children Remember? Complete tree

  6. Heaps Heap with letters 'A' .. 'J'

  7. Heaps Another heap with letters 'A' .. 'J'

  8. treePtr 50 C 30 20 A T 10 18 Heaps treePtr Are these heaps?

  9. 70 Heaps treePtr 12 60 40 30 8 10 Is this a heap?

  10. 70 Heaps Where is the largest element? treePtr 12 60 40 30 8 Can we use this fact to implement an efficient PQ?

  11. Heaps • We have immediate access to highest priority item BUT if we remove it, the structure isn't a heap • Can we "fix" the problem efficiently?

  12. Heaps Shape property is restored. Can order property be restored?

  13. Heaps How?

  14. Heaps

  15. Heaps template<class ItemType> struct HeapType { void reheapDown(int root, int bottom); … ItemType* elements; // Dynamic array int numElements; }

  16. 70 0 Heaps root Number nodes left to right by level 12 2 60 1 40 3 30 4 8 5

  17. tree [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] 70 60 12 40 30 8 70 0 12 2 60 1 40 3 30 4 8 5 Heaps elements Use number as index

  18. Heaps • ReapDown(heap, root, bottom) • if heap.elements[root] is not a leaf • Set maxChild to index of child with larger value • if heap.elements[root] < heap.elements[maxChild] • Swap(heap.elements[root], heap.elements[maxChild]) • ReheapDown(heap, maxChild, bottom) What variables do we need? Where are a node's children?

  19. Heaps // IMPLEMENTATION OF RECURSIVE HEAP MEMBER FUNCTIONS void HeapType<ItemType>::ReheapDown(int root, int bottom) // Pre: ItemType overloads the relational operators // root is the index of the node that may violate the // heap order property // Post: Heap order property is restored between root and // bottom { int maxChild ; int rightChild ; int leftChild ; leftChild = root * 2 + 1 ; rightChild = root * 2 + 2 ;

  20. Heaps if (leftChild <= bottom) // ReheapDown continued { if (leftChild == bottom) maxChild = leftChld; else { if (elements[leftChild] <= elements[rightChild]) maxChild = rightChild; else maxChild = leftChild; } if (elements[root] < elements[maxChild]) { Swap(elements[root], elements[maxChild]); ReheapDown(maxChild, bottom); } } }

  21. Heaps • What other operations might our HeapType need?

  22. Heaps Add K: Where must the new node be put? Now what?

  23. Heaps

  24. void HeapType::ReheapUp(int root, int bottom) // Pre: ItemType overloads the relational operators // bottom is the index of the node that may violate // the heap order property. The order property is // satisfied from root to next-to-last node. // Post:Heap order property is restored between root and // bottom { int parent; if (bottom > root) { parent = ( bottom - 1 ) / 2; if (elements[parent] < elements[bottom]) { Swap(elements[parent], elements[bottom]); ReheapUp(root, parent); } } }

  25. Heaps • How can heaps be used to implement Priority Queues?

  26. Priority Queues • class FullPQ(){}; • class EmptyPQ(){}; • template<class ItemType> • class PQType • { • public: • PQType(int); • ~PQType(); • void MakeEmpty(); • bool IsEmpty() const; • bool IsFull() const; • void Enqueue(ItemType newItem); • void Dequeue(ItemType& item); • private: • int length; • HeapType<ItemType> items; • int maxItems; • };

  27. Priority Queues • template<class ItemType> • PQType<ItemType>::PQType(int max) • { • maxItems = max; • items.elements = new ItemType[max]; • length = 0; • } • template<class ItemType> • void PQType<ItemType>::MakeEmpty() • { • length = 0; • } • template<class ItemType> • PQType<ItemType>::~PQType() • { • delete [] items.elements; • }

  28. Priority Queues • Dequeue • Set item to root element from queue • Move last leaf element into root position • Decrement length • items.ReheapDown(0, length-1) • Enqueue • Increment length • Put newItem in next available position • items.ReheapUp(0, length-1)

  29. Priority Queues • template<class ItemType> • void PQType<ItemType>::Dequeue(ItemType& item) • { • if (length == 0) • throw EmptyPQ(); • else • { • item = items.elements[0]; • items.elements[0] = items.elements[length-1]; • length--; • items.ReheapDown(0, length-1); • } • }

  30. Priority Queues • template<class ItemType> • void PQType<ItemType>::Enqueue(ItemType newItem) • { • if (length == maxItems) • throw FullPQ(); • else • { • length++; • items.elements[length-1] = newItem; • items.ReheapUp(0, length-1); • } • }

  31. Enqueue Dequeue Heap O(log2N) O(log2N) Linked List O(N) O(N) Binary Search Tree Balanced O(log2N) O(log2N) Skewed O(N) O(N) Comparison of Priority Queue Implementations

More Related