1 / 8

8421 进制转换法

8421 进制转换法. 二进制与十六进制之间的转换. 数制转换. X. “按权相加” ( R 进 制转换为十进制 ) “除 R 取 余法”(十进制转换 为 R 进 制 ). “8421” 法. 原理. 根据二进制的原则“逢二进一”,我们把 2 的 n 次方列出分别是: 2 0 =1 2 1 =2 2 2 =4 2 3 =8 2 4 =16 2 5 =32 2 6 =64…… “ 8421” 法的原理说白了就是一种凑数法,按 2 的 n 次方的值列出,根据不同的情况进行 “凑数”。. 例子. 11011001B=( )H. D9.

amy-oliver
Download Presentation

8421 进制转换法

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 8421进制转换法 二进制与十六进制之间的转换

  2. 数制转换 X • “按权相加”(R进制转换为十进制) • “除R取余法”(十进制转换为R进制) “8421”法

  3. 原理 • 根据二进制的原则“逢二进一”,我们把2的n次方列出分别是: • 20=1 21=2 22=4 23=8 24=16 25=32 26=64…… • “8421”法的原理说白了就是一种凑数法,按2的n次方的值列出,根据不同的情况进行“凑数”。

  4. 例子 • 11011001B=( )H D9 2B 101011B=( )H 如果二进制数不够位,应在整数位左边或小数位右边用0补足,凑足4的倍数。

  5. 解题 101011 • 11011001 00 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8+4 + 1=13 8+ 1=9 2 8+2+1 D 9 2 B

  6. 拓展 • A3H=( )B • 10110.1010B=( )H 10100011 16.A

  7. A 3 10100011 10 8 4 2 1 8 4 2 1 2+1=3 8 + 2 =10 0 0 1 1 1 0 1 0 返回

  8. 待续。。。

More Related