150 likes | 378 Views
CSCI 115. Chapter 2 Logic. CSCI 115. §2 .1 Propositions and Logical Operations. §2 .1 – Propositions and Log Ops. Logical Statement Logical Connectives Propositional variables Conjunction (and: ) Disjunction (or: ) Negation (not: ~) Truth tables.
E N D
CSCI 115 Chapter 2 Logic
CSCI 115 §2.1 Propositions and Logical Operations
§2.1 – Propositions and Log Ops • Logical Statement • Logical Connectives • Propositional variables • Conjunction (and: ) • Disjunction (or: ) • Negation (not: ~) • Truth tables
§2.1 – Propositions and Log Ops • Quantifiers • Consider A = {x| P(x)} • t A if and only if P(t) is true • P(x) – predicate or propositional function • Programming • if, while • Guards
§2.1 – Propositions and Log Ops • Universal Quantification – true for all values of x • x P(x) • Existential Quantification – true for at least one value • x P(x) • Negation of quantification
CSCI 115 §2.2 Conditional Statements
§2.2 – Conditional Statements • Conditional statement: If p then q • p q • p – antecedent (hypothesis) • q – consequent (conclusion) • Truth tables
§2.2 – Conditional Statements • Given a conditional statement p q • Converse • Inverse • Contrapositive • Biconditional (if and only if) • p q is equivalent to ((p q) (q p))
§2.2 – Conditional Statements • Statements • Tautology (always true) • Absurdity (always false) • Contingency (truth value depends on the values of the propositional variables) • Logical equivalence ()
CSCI 115 §2.3 Methods of Proof
§2.3 – Methods of Proof • Prove a statement • Choose a method • Disprove a statement • Find a counterexample • Prove or disprove a statement • Where do I start?
§2.3 – Methods of Proof • Direct Proof • Proof by contradiction • Mathematical Induction (§2.4)
§2.3 – Methods of Proof • Valid rules of inference • ((p q) (q r)) (p r) • ((p q) p) q Modus Ponens • ((p q) ~q) ~p Modus Tollens • ~~p p Negation • p ~~p Negation • p p Repitition • Common mistakes – the following are NOT VALID • ((p q) q) p • ((p q) ~p) ~q
CSCI 115 §2.4 Mathematical Induction
§2.4 – Mathematical Induction • If we want to show P(n) is true nZ, n > n0 where n0 is a fixed integer, we can do this by: i) Show P(n0) is true • Basic step ii) Show that for k > n0, if P(k) is true, then P(k + 1) is true • Inductive step