190 likes | 358 Views
Spectral Properties of a 2D Spin-Orbit Hamiltonian. Denis Bulaev Department of Physics University of Basel, Switzerland. Outline. Motivation k.p method 2DEG Quantum Dots Summary. Motivation. ….. Quantum Computing. Supercoducting
E N D
Spectral Properties ofa 2D Spin-Orbit Hamiltonian Denis Bulaev Department of Physics University of Basel, Switzerland
Outline • Motivation • k.p method • 2DEG • Quantum Dots • Summary
Motivation • ….. • Quantum Computing Supercoducting [A.Shnirman, G.Shön, Z.Herman, PRL 79, 2371 (1997)] Quantum-Dot-based [D.Loss and D.P.DiVincenzo, PRA 57, 120 (1998)] Nano’ll make $1T/yr by 2015
k.p method Pauli Hamiltonian Thomas term (s-o coupling)
E G1 Eg G15 k Inversion asymmetric strs. (Td) CB l=0 (s) j=l+s=1/2 VB l=1 (p) j=3/2 & 1/2 Bir and Pikus. Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974).
Inversion asymmetric strs. (Td) Single group Double group E E G1 l=0 j=1/2 G6 DxG1= G6 DxG15 = G7+ G8 Eg D j=3/2 G8 G15 l=1 j=1/2 G7 k k Optical Orientation, ed. by Zakharchenya and F. Meier (North - Holland, Amsterdam, 1984) Bir and Pikus. Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974).
Kane Hamiltonian Folding down
Electron effective Hamiltonian Dresselhaus SO (DSO) coupling Dresselhaus, Phys. Rev. 100, 580 (1955). (GaAs, InAs, InSb, etc - inversion asymmetry) For Ge, Si - inversion symmetric strs (point group Oh = Td x Ci ) DSO = 0! Remark No. 1 DSO is due to bulk inversion asymmetry (BIA)
2DEG GaAs GaAs AlyGa1-yAs AlxGa1-xAs AlxGa1-xAs AlxGa1-xAs V(z) V(z) z z D2d (E; C2; 2C2; 2sd; 2S4) C2v (E; C2; 2sv)
Dresselhaus SO interaction D'yakonov & Kocharovskii, Sov. Phys. Semicond. 20, 110 (1986)
Rashba SO interaction After folding down Bychkov & Rashba, JETP Lett. 39, 78 (1984). Remark No. 2 RSO is due to structure inversion asymmetry (SIA)
Energy spectrum of 2DEG Ganichev, et al., PRL 92, 256601 (2004).
Spin decoherence anisotropy Averkiev & Golub PRB 60, 15582 (1999). Remark No. 3 SO coupling leads to anisotropy in dispersion and spin decoherence
Canonical transformation Geyler, Margulis, Shorokhov, PRB 63, 245316 (2001).
Three lowest electron energy levels DresselhausSO couplingRashba SO coupling Anti-crossing (crossing) of the levels E2 and E3 at
Anticrossing due to Rashba coupling E3 – E1 0.25 0.20 orbital Energy [meV] 0.15 0.10 Zeeman E2 – E1 0.05 E1 – E1 8 0 2 4 6 10 B [T] Bulaev, Loss, PRB 71, 205324 (2005).
Summary • SO coupling is due to space inversion asymmetry • Dispersion anisotropy in a 2DEG • Anticrossing due to RSO in a QD