1 / 35

Normally Distributed Seasonal Unit Root Tests D. A. Dickey North Carolina State University

Normally Distributed Seasonal Unit Root Tests D. A. Dickey North Carolina State University Note: this presentation is based on the paper “Normally Distributed Seasonal Unit Root Tests” authored by D. A. Dickey in the book Economic Time Series: Modeling and Seasonality

anakin
Download Presentation

Normally Distributed Seasonal Unit Root Tests D. A. Dickey North Carolina State University

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Normally Distributed Seasonal Unit Root Tests D. A. Dickey North Carolina State University Note: this presentation is based on the paper “Normally Distributed Seasonal Unit Root Tests” authored by D. A. Dickey in the book Economic Time Series: Modeling and Seasonality edited by Bell, Holan, and McElroy published by CRC press, 2012

  2. Model: Seasonal AR(1) Yt = rYt-s + et, et is White Noise Goal: Test H0: r=1 Yt Yi,j=Ymonth, year J F M A M J J A S O N D (s=12) Yr. 1 Yr. 2 | Yr. m Y1,1 Y1,2 Y1,3 Y1,4 Y1,5 Y1,6 Y1,7 Y1,8 Y1,9 Y1,11 Y1,11Y1,12=Y1,s Y2,1 Y2,2 Y2,3 Y2,4 Y2,5 Y2,6 Y2,7 Y2,8 Y2,9 Y2,21 Y2,11 Y2,12=Y2,s | Ym,1 Ym,2 Ym,3 Ym,4 Ym,5 Ym,6 Ym,7 Ym,8 Ym,9 Ym,21 Ym,11 Ym,12=Ym,s Yt = rYt-s + et Yt – Yt-s = (r-1)Yt-s + ei,j Yi,j -Yi,j-1 = (r-1) Yi,j-1 + ei,j

  3. Previous work: Yt = rYt-s + et Yi,j = r Yi,j-1 + ei,j Yi,j -Yi,j-1 = (r-1) Yi,j-1 + ei,j • Dickey & Zhang (2011, J. Korean Stat. Soc.) • Under H0: • S large  CLT t stat NORMAL (0,1) (O(s-1/2) mean adjustment helpful ) • Known O(s-1/2) adjustments to mean (same) for k periodic regressors added (k<<s) • MSEs2 • n.b.: Does not apply to seasonal dummy variables

  4. Known mean 0 *****Add seasonal dummy variables:*****

  5. w.o.l.o.g. Assume s2 = 1 Notation: E{Ni}=N0 E{Di}=D0 (different for mean 0 versus seasonal means) MSE=Mean Square Error = (Total SSq – Model SSq)/df MSE in seasonal means case is (regressing deseasonalized differences on deseasonalized lag levels)  !!!

  6. Standard error [(X’X)-1(MSE)]1/2 = t statistic, seasonal means model: No Mean Seasonal Means

  7. Taylor Series, seasonal means : (N0=-(m-2)/2<0)

  8. Approximate variance of t in seasonal means case

  9. COMPARISON No Mean Model Seasonal Means Model

  10. Calculation “recipe” for Seasonal Means Model Regress Yt-Yt-s on seasonal dummies and Yt-s. Get t = t test for Yt-s Compute Compute Compare to N(0,1) to get p-value.

  11. Alternative approach: Expand around (N, D) only, run large (1/2 million) simulation  fixup for small m. Result for variance: Similar empirical adjustments to mean:

  12. Compare limit (sinfinity) variance formulas: Taylor 3 variable versus Taylor 2 variable with and without adjustments 1 million replicates s=12, m=6 (10 seconds run time) Reference normal variance from empirical adjustment from 3 variable Taylor: Unadjusted (N,D) only

  13. Notes: Graphs use sample means (both expansions give same mean approximation) 3 variable Taylor variance 1.1556 closer to simulated statistics’ variance 1.2310 than is empirical adjusted if no s adjustment used. With the finite s part in the empirically adjusted formula, that formula gives 1.2024 The choice m=6 gave the biggest vertical gap between the limit (s) variance formulas. In previous graph. NEXT: Sequence with m=6, s =4, 6, 12, 24 THEN: Sequence with s=4, m=6, 8, 10, 20, 100

  14. Histogram Stats (reps = 1,000,000) (formulas from book)

  15. Higher order models (seasonal multiplicative form) Suggested estimation (Dickey, Hasza, Fuller (1984)) (under H0:r=1) RegressDt = Yt-Yt-s on p lags of D  AR(p) and residual rt FilterY using AR(p) model for D. Ft= filtered Yt Regressrt onFt-s& p lags of D (t test on Ft-s is t) Dickey, D. A., D. P. Hasza, and W. A. Fuller (1984). “Testing for Unit Roots in Seasonal Time Series”, Journal of the American Statistical Association,79, 355-367.

  16. Example 1: Oil Imports (from book, s=12, m=36) Levels First Differences & Seasonal Means

  17. Parameter Variable DF Estimate t Value Pr > |t| Intercept 1 -163.62422 -0.20 0.8442 filter12 1 -0.81594 -16.19 <.0001  D1 1 0.01853 0.48 0.6349 D2 1 -0.00511 -0.11 0.9128 D3 1 0.00016148 0.00 0.9974 D4 1 0.02891 0.58 0.5617 D5 1 0.02369 0.48 0.6344 D6 1 0.00623 0.13 0.8998 D7 1 -0.01025 -0.22 0.8268 D8 1 -0.04440 -1.13 0.2604 Ft-12 +--------------------------------------------------------------+ | Formulas from Economic Time Series Modeling and Seasonality | | pg. 398 (Bell, Holan McElroy eds.) | | | | s = 12 m = 36 | | Tau = -16.19 Mean = -4.2118 variance = 0.8377 | | | | Tau ~ N(-4.2118,0.8377) | | | | Z=(-16.19-(-4.2118))/sqrt(0.8377) | | | | Pr{Z <-13.09 } = 0.0000 | | | +--------------------------------------------------------------+

  18. Maximum Likelihood Estimation Standard Approx Parameter Estimate Error t Value Pr > |t| Lag Variable Shift MU 515.88809 4154.0 0.12 0.9012 0 amt 0 AR1,10.17664 0.05113 3.450.000612amt 0 AR2,1 -0.67807 0.04966 -13.65 <.0001 1 amt 0 AR2,2 -0.40409 0.05916 -6.83 <.0001 2 amt 0 AR2,3 -0.19310 0.06194 -3.12 0.0018 3 amt 0 AR2,4 -0.23710 0.06232 -3.80 0.0001 4 amt 0 AR2,5 -0.20400 0.06233 -3.27 0.0011 5 amt 0 AR2,6 -0.17344 0.06259 -2.77 0.0056 6 amt 0 AR2,7 -0.18688 0.06021 -3.10 0.0019 7 amt 0 AR2,8 -0.07802 0.05122 -1.52 0.1277 8 amt 0 NUM1 6522.6 7137.8 0.91 0.3608 0 month1 0 NUM2 -25856.9 5920.4 -4.37 <.0001 0 month2 0 NUM3 16307.1 5505.8 2.96 0.0031 0 month3 0 NUM4 6196.3 6060.5 1.02 0.3066 0 month4 0 NUM5 5578.6 6051.0 0.92 0.3566 0 month5 0 NUM6 2777.3 5744.2 0.48 0.6287 0 month6 0 NUM7 3490.6 6036.5 0.58 0.5631 0 month7 0 NUM8 3538.0 6079.1 0.58 0.5606 0 month8 0 NUM9 -13966.8 5499.4 -2.54 0.0111 0 month9 0 NUM10 5738.4 5910.3 0.97 0.3316 0 month10 0 NUM11 -11305.0 7131.6 -1.59 0.1129 0 month11 0 Autocorrelation Check of Residuals To Chi- Pr > Lag Square DF ChiSq --------------------Autocorrelations-------------------- 6 . 0 . 0.001 -0.003 -0.007 0.004 -0.001 -0.010 12 0.94 3 0.8169 0.016 0.006 -0.009 -0.009 0.038 0.002 18 7.50 9 0.5851 -0.048 0.076 0.016 -0.054 -0.052 -0.029 24 12.23 15 0.6615 0.017 0.059 -0.048 -0.022 0.059 -0.019 30 15.66 21 0.7883 0.014 0.022 0.023 -0.002 0.079 0.000 36 24.97 27 0.5761 -0.002 0.061 -0.007 0.097 0.018 0.080 42 31.62 33 0.5358 -0.019 0.024 -0.033 -0.074 -0.075 -0.030 48 40.27 39 0.4140 0.002 -0.008 -0.097 0.051 0.024 0.072

  19. Example 2: Airline Series from Box & Jenkins Original Scale Logarithmic Scale

  20. Log Passengers (1,12) with lags at 1, 12, 23 Standard Approx Parameter Estimate Error t Value Pr > |t| Lag MU 0.0002871 0.0022107 0.13 0.8967 0 AR1,1 -0.28601 0.06862 -4.17 <.0001 1 AR1,2 -0.43072 0.07154 -6.02 <.0001 12 AR1,3 0.30157 0.07270 4.15 <.0001 23 Autocorrelation Check of Residuals To Chi- Pr > Lag Square DF ChiSq --------------Autocorrelations---------------- 6 6.22 3 0.1016 -0.050 -0.066 -0.096 -0.105 0.112 0.075 12 10.23 9 0.3319 -0.009 -0.045 0.137 -0.044 0.037 -0.063 18 15.87 15 0.3909 -0.110 0.022 0.063 -0.094 0.100 0.045 24 24.25 21 0.2809 -0.154 0.002 0.007 -0.014 0.015 -0.169

  21. Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 -0.00095084 0.00309 -0.31 0.7587 filter12 1 -0.42340 0.13897 -3.05 0.0029 D1 1 0.11925 0.08262 1.44 0.1517 D12 1 0.24740 0.14225 1.74 0.0847 D23 1 0.09924 0.07566 1.31 0.1923 +--------------------------------------------------------------+ | Formulas from Economic Time Series Modeling and Seasonality | | pg. 398 (Bell, Holan McElroy eds.) | | | | s = 12 m = 12 | | Tau = -3.05 Mean = -4.1404 variance = 0.9550 | | | | Tau ~ N(-4.1404,0.9550) | | | | Z = (-3.05-(-4.1404))/sqrt(0.9550) | | Pr{Z <1.1158 } = 0.8677 | | | +--------------------------------------------------------------+

  22. Example 3: Weekly Natural Gas Supplies (Energy Information Agency) November April

  23. Lag 1 model fits well for Natural Gas Series First and Span 52 Differences Conditional Least Squares Estimation Standard Approx Parameter Estimate Error t Value Pr > |t| Lag MU 0.23692 2.51525 0.09 0.9250 0 AR1,1 0.39305 0.03101 12.68 <.0001 1 Autocorrelation Check of Residuals To Chi- Pr > Lag Square DF ChiSq ------------------Autocorrelations----------------- 6 1.61 5 0.8997 0.007 -0.026 0.029 -0.013 -0.006 -0.003 12 12.55 11 0.3237 -0.051 0.000 0.034 0.042 0.008 0.081 18 18.20 17 0.3764 0.018 0.059 0.020 0.027 0.005 0.036 24 19.60 23 0.6656 0.003 -0.033 -0.009 -0.013 -0.010 -0.011 30 20.56 29 0.8747 0.013 0.008 0.014 0.008 -0.019 0.012 36 25.35 35 0.8847 0.023 0.016 -0.011 -0.051 0.011 -0.040 42 34.76 41 0.7432 -0.031 -0.082 -0.007 -0.042 0.009 -0.024 48 40.70 47 0.7295 0.034 0.054 -0.030 0.005 0.036 0.008

  24. Natural Gas Example – OLS Regression Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 -0.27635 1.05426 -0.26 0.7933 filter52 1 -1.04170 0.03343 -31.16 <.0001  D1 1 0.00313 0.02138 0.15 0.8838 +----------------------------------------------------------+ | | | s = 52 m = 18 | | Tau = -31.16 Mean = -8.6969 variance = 0.8877 | | | | Tau ~ N(-8.6969,0.8877) | | | | Z = (-31.16 - (-8.6969))/sqrt(0.8877) = -23.84 | | | | Pr{Z <-23.84 } = 0.0000 | | | +----------------------------------------------------------+

More Related