1 / 17

Physiology, Health & Exercise

Physiology, Health & Exercise. Lesson 18 Normal BGL Pathology of diabetes mellitus (DM). Normal BGL & Diabetes. Includes: Role of insulin & glucagon Pancreas & changes in BGL Non-insulin dependent diabetes mellitus (NIDDM) Insulin dependent diabetes mellitus (IDDM).

andersoni
Download Presentation

Physiology, Health & Exercise

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Physiology, Health & Exercise Lesson 18 Normal BGL Pathology of diabetes mellitus (DM)

  2. Normal BGL & Diabetes Includes: • Role of insulin & glucagon • Pancreas & changes in BGL • Non-insulin dependent diabetes mellitus (NIDDM) • Insulin dependent diabetes mellitus (IDDM)

  3. Normal Blood Glucose levels • Glucose- source of energy for body • Carbohydrates digested to glucose • Absorbed by blood capillaries in villi • Carried to liver by hepatic portal vein • Then distributed to body cells

  4. Normal Blood Glucose levels If too much glucose (hyperglycaemia) in blood: • Why does this happen? • How does the body respond? • BGL monitored by receptors in Islets of Langerhans (pancreas) • Respond by stimulating an enzyme that promotes production of insulin (by b-cells) • Excess glucose stored as glycogen by liver • BGL fall back to normal levels

  5. Normal Blood Glucose levels If glucose levels in blood drop (hypoglycaemia): • Why does this happen? • How does the body respond? • BGL monitored by receptors in Islets of Langerhans (pancreas) • Respond by stimulating an enzyme that promotes production of glucagon (by a-cells) • Glycogen converted into glucose by liver • BGL increase back to normal levels

  6. Normal Blood Glucose levels Example of homeostasis • What does this mean? • Why is it described as beingnegative feedback?

  7. Normal Blood Glucose levels Insulin can affect a number of different cell types, principally: • Skeletal muscle cells • Liver cells • Fat cells

  8. Normal Blood Glucose levels • Skeletal muscle cells & fat cells have very low permeability to glucose in absence of insulin • Insulin acts by stimulating the uptake of glucose into muscle cells • Liver cells are quite permeable to glucose, so glucose enters whether or not insulin is present • But insulin still increases uptake of glucose by liver cells & glycogen formation

  9. How does insulin act? • Insulin is a protein hormone • Extracellular hydrophilic • Binds to specific insulin receptors in cell membrane of target cell • Activated receptor promotes recruitment of glucose transporters from intracellular pool to cell membrane • glucose transporters increase insulin- mediated uptake of glucose into cell

  10. How does insulin act? • When insulin levels decrease, glucose transporters move from cell membrane to intracellular storage pool, where they can be recycled • Under certain circumstances e.g. obesity, number of insulin receptors decreases • Glucose uptake by cell decreases • Leads to insulin resistance

  11. How does insulin act?

  12. Types of diabetes mellitus (DM) • Two types: • Type 1- Failure of pancreas to produce adequate quantities of insulin IDDM (insulin dependent DM) • Type 2-Failure of tissues to respond to insulin (insulin resistance) NIDDM (non-insulin dependent DM)

  13. Type 1 or IDDM • Accounts for 5-10% of diabetes cases • Caused by destruction of some or all b- cells in Islets of Langerhans • Inadequate insulin production • Commonly occurs in childhood • Previously called early-onset or juvenile-onset diabetes

  14. Type 2 or NIDDM • Much more common • Accounts for 90-95% of diabetes cases • Previously called late-onset because more common in people over age of 40 • However becoming more common in younger people (and has been diagnosed in people as young as 13!) • More than 80% of people with NIDDM are overweight • Obesity is the greatest risk factor for NIDDM

  15. Type 2 or NIDDM cont… • Can produce insulin • Have insulin levels in blood normal or higher than normal • But target cells (especially in liver & skeletal muscles) have become less sensitive to insulin • Insulin resistance • Deficiency of insulin receptors • Cells less able to take up glucose • BGL rise

  16. Type 2 or NIDDM cont… • In this case most people develop Insulin resistance before they develop diabetes • Pancreas tries to compensate by producing more insulin • Eventually the b-cells become “worn out” • Insulin production decreases • Causes an increase in BGL

More Related