560 likes | 1.74k Views
2. Course Outline. Instructor:? ? ? ?? (??? Rm 412 Ext. 33412) Textbook:Herbert B. Callen, 1985,
E N D
1. Instructor: Prof. Chi-Chung Hua Advanced Thermodynamics
2. 2 Course Outline Instructor: ? ? ? ?? (??? Rm 412 Ext. 33412)
Textbook: Herbert B. Callen, 1985, “Thermodynamics and Introduction to Thermostatistics”, 2nd ed., John Wiley & Sons, Inc. (??????)
Grading: Homework (20 %)
Two Exams (80 %)
Teaching assistants: ??????? (Rm 301, Ext. 23471)
3. 3 Part one: Classic Thermodynamics
Chapter 1: Basic Concepts and Principles
Chapter 2: Thermodynamic potentials and Legendre Transformations
Chapter 3: Stabilities, Phase Transitions, and Critical Phenomena
Chapter 4: Applications to Material Properties
Part two: Statistic Thermodynamics
Chapter 5: Statistic Ensembles and Energy Representations
Chapter 6: Some Applications of Statistic Mechanics
4. 4
5. 5 Thermodynamic Equilibrium and Postulate I 1-1.1 Thermodynamic coordinates
6. 6 Q1: How to select variables of an experimental or simulation system?
7. 7
8. 8
9. 9 1-1.2 Definition of equilibrium states System has no external influences (such as flow, electrical fields).
All thermodynamic properties must be “time invariance” (time independent).
10. 10 1-1.3 Limitations of thermodynamic equilibrium
11. 11 The Entropy Maximum Postulates: Postulate II & III
12. 12
13. 13
14. 14
15. 15 Intensive Parameters and Equations of State 1-3.1 Extensive parameters & intensive parameters
16. 16
17. 17
18. 18
19. 19
20. 20
21. 21
22. 22
23. 23
24. 24
25. 25
26. 26
27. 27 The Euler Equation and the Gibbs-Duhem Relation 1-4.1 The Euler relation
28. 28
29. 29
30. 30
31. 31
32. 32 Homework Problem 1.10-1: (a), (f), (g), (i)
Problem 2.2-1
Problem 3.3-2
Read Sec. 3-5 (The ideal van der Waals fluid)
33. 33 Thermodynamic Potentials and Legendre Transformations Contents
2-1 Legendre Transformations
2-2 The Legendre Transformed Functions and Thermodynamic Potentials
2-3 Minimum Principles for the Potentials
2-4 Applications of various Legendre Transformed Potentials
2-5 Maxwell Relations and Some Applications
34. 34 Legendre Transformations 2-1.1 The S max. principle & the U min. principle
35. 35
36. 36
37. 37
38. 38
39. 39
40. 40
41. 41
42. 42 The Legendre Transformed Functions and Thermodynamic Potentials
43. 43
44. 44
45. 45
46. 46
47. 47 Minimum Principles for the Potentials
48. 48
49. 49
50. 50
51. 51
52. 52
53. 53 Applications of various Legendre Transformed Potentials 2-4.1 The Helmholtz potential
54. 54
55. 55
56. 56
57. 57
58. 58
59. 59
60. 60
61. 61
62. 62 Maxwell Relations and Some Applications 2-5.1 The Maxwell relations & mnemonic diagram
63. 63
64. 64
65. 65
66. 66
67. 67
68. 68
69. 69
70. 70
71. 71
72. 72
73. 73
74. 74
75. 75 Homework Problem 5.3-1
Problem 5.3-12
Problem 6.3-2
Problem 7.4-7
Problem 7.4-15
Problem 7.4-23
76. 76
77. 77 Stability Conditions for Thermodynamic Potentials 3-1.1 Intrinsic stability of thermodynamic systems
78. 78
79. 79
80. 80
81. 81
82. 82
83. 83
84. 84
85. 85 Le Chaterlier’s Principle and the Effects of Fluctuations 3-2.1 Le Chatelier’s principle
86. 86
87. 87
88. 88
89. 89 First-order Phase Transitions in Single-Component Systems 3-3.1 First-order & second-order phase transitions
90. 90
91. 91
92. 92
93. 93
94. 94
95. 95
96. 96
97. 97
98. 98
99. 99
100. 100
101. 101
102. 102
103. 103
104. 104
105. 105
106. 106
107. 107
108. 108 Thermodynamic States near Critical Points 3-4.1 Features in the vicinity of the critical point
109. 109
110. 110
111. 111
112. 112
113. 113 Homework Problem 9.1-1
Problem 9.3-3
Problem 9.4-11
Problem 9.7-1
114. 114 Applications to Material Properties Contents
4-1 The general ideal gas
4-2 Small Deviations from Ideality—The Virial Expansion
4-3 Law of Corresponding States for Gases
4-4 Applications to Dilute Solutions—The van’t Hoff Relation and the Raoult’s law
4-H Homework
115. 115 The general ideal gas 4-1.1 The essence of ideal gas behavior
116. 116
117. 117
118. 118
119. 119
120. 120 Small Deviations from Ideality—The Virial Expansion 4-2.1 Virial expansion
121. 121
122. 122
123. 123 Law of Corresponding States for Gases 4-3.1 Important observations for gases
124. 124
125. 125
126. 126
127. 127 Applications to Dilute Solutions—the van’t Hoff Relation and the Raoult’s law 4-4.1 the van’t Hoff relation for osmotic pressure
128. 128
129. 129
130. 130
131. 131 Homework Problem 13.2-2
Problem 13.5-2
Problem 13.5-3
132. 132 Statistic Ensembles and Formulism Contents
5-1 The entropy representation—the Boltzmann’s law
5-1.1 Physical significance of entropy for closed system (15.1)
5-1.2 The Einstein model of a crystalline solid (15.2)
5-1.3 The two-state system (15.3); a polymer model (15.4)
5-2 The Canonical Formalism
5-2.1 The probability distribution (16.1)
5-2.2 The partition function (16.2)
5-2.3 The classical ideal gas (16.10)
5-3 Generalized Canonical Formulations
5-3.1 Entropy as a measure of disorder (17.1)
5-3.2 The grand canonical formalism (17.3)
133. 133 The Entropy Representation—the Boltzmann’s law 5-1.1 Physical significance of entropy for closed system
134. 134
135. 135
136. 136
137. 137
138. 138
139. 139
140. 140
141. 141
142. 142
143. 143
144. 144
145. 145
146. 146
147. 147
148. 148
149. 149 The Canonical Formalism 5-2.1 The probability distribution
150. 150
151. 151
152. 152
153. 153
154. 154
155. 155
156. 156
157. 157
158. 158
159. 159
160. 160
161. 161
162. 162
163. 163
164. 164
165. 165
166. 166 Generalized Canonical Formulations 5-3.1 Entropy as a measure of disorder
167. 167
168. 168
169. 169
170. 170
171. 171
172. 172
173. 173
174. 174
175. 175
176. 176
177. 177
178. 178
179. 179
180. 180 Homework Problem 15.1-1
Problem 15.2-1
Problem 15.4-4
Problem 16.1-1
Problem 16.1-4
Problem 16.2-1
Problem 16.10-4
181. 181 Statistical Fluctuations and Solution Strategies Contents
6-1 Fluctuations
6-1.1 The probability distribution of fluctuations (19.1)
6-1.2 Moments and the energy fluctuations (19.2)
6-2 Quantum Fluids
6-2.1 Quantum particle-fermions and bosons (18.1)
6-2.2 The ideal Fermi fluid (18.2)
6-2.3 The ideal Bose fluid (18.5)
6-2.4 The classical limit and the quantum criterion (18.3)
6-2.5 The strong quantum regime: electrons in a metal (18.4)
6-2.6 Bose condensation (18.7)
182. 182 Fluctuations 6-1.1 The probability distribution of fluctuations
183. 183
184. 184
185. 185
186. 186
187. 187
188. 188
189. 189 Quantum Fluids
190. 190
191. 191
192. 192
193. 193
194. 194
195. 195
196. 196
197. 197
198. 198
199. 199
200. 200
201. 201
202. 202
203. 203
204. 204
205. 205
206. 206
207. 207
208. 208
209. 209