1 / 40

Advanced Thermodynamics

2. Course Outline. Instructor:? ? ? ?? (??? Rm 412 Ext. 33412) Textbook:Herbert B. Callen, 1985,

andrew
Download Presentation

Advanced Thermodynamics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


    1. Instructor: Prof. Chi-Chung Hua Advanced Thermodynamics

    2. 2 Course Outline Instructor: ? ? ? ?? (??? Rm 412 Ext. 33412) Textbook: Herbert B. Callen, 1985, “Thermodynamics and Introduction to Thermostatistics”, 2nd ed., John Wiley & Sons, Inc. (??????) Grading: Homework (20 %) Two Exams (80 %) Teaching assistants: ??????? (Rm 301, Ext. 23471)

    3. 3 Part one: Classic Thermodynamics Chapter 1: Basic Concepts and Principles Chapter 2: Thermodynamic potentials and Legendre Transformations Chapter 3: Stabilities, Phase Transitions, and Critical Phenomena Chapter 4: Applications to Material Properties Part two: Statistic Thermodynamics Chapter 5: Statistic Ensembles and Energy Representations Chapter 6: Some Applications of Statistic Mechanics

    4. 4

    5. 5 Thermodynamic Equilibrium and Postulate I 1-1.1 Thermodynamic coordinates

    6. 6 Q1: How to select variables of an experimental or simulation system?

    7. 7

    8. 8

    9. 9 1-1.2 Definition of equilibrium states System has no external influences (such as flow, electrical fields). All thermodynamic properties must be “time invariance” (time independent).

    10. 10 1-1.3 Limitations of thermodynamic equilibrium

    11. 11 The Entropy Maximum Postulates: Postulate II & III

    12. 12

    13. 13

    14. 14

    15. 15 Intensive Parameters and Equations of State 1-3.1 Extensive parameters & intensive parameters

    16. 16

    17. 17

    18. 18

    19. 19

    20. 20

    21. 21

    22. 22

    23. 23

    24. 24

    25. 25

    26. 26

    27. 27 The Euler Equation and the Gibbs-Duhem Relation 1-4.1 The Euler relation

    28. 28

    29. 29

    30. 30

    31. 31

    32. 32 Homework Problem 1.10-1: (a), (f), (g), (i) Problem 2.2-1 Problem 3.3-2 Read Sec. 3-5 (The ideal van der Waals fluid)

    33. 33 Thermodynamic Potentials and Legendre Transformations Contents 2-1 Legendre Transformations 2-2 The Legendre Transformed Functions and Thermodynamic Potentials 2-3 Minimum Principles for the Potentials 2-4 Applications of various Legendre Transformed Potentials 2-5 Maxwell Relations and Some Applications

    34. 34 Legendre Transformations 2-1.1 The S max. principle & the U min. principle

    35. 35

    36. 36

    37. 37

    38. 38

    39. 39

    40. 40

    41. 41

    42. 42 The Legendre Transformed Functions and Thermodynamic Potentials

    43. 43

    44. 44

    45. 45

    46. 46

    47. 47 Minimum Principles for the Potentials

    48. 48

    49. 49

    50. 50

    51. 51

    52. 52

    53. 53 Applications of various Legendre Transformed Potentials 2-4.1 The Helmholtz potential

    54. 54

    55. 55

    56. 56

    57. 57

    58. 58

    59. 59

    60. 60

    61. 61

    62. 62 Maxwell Relations and Some Applications 2-5.1 The Maxwell relations & mnemonic diagram

    63. 63

    64. 64

    65. 65

    66. 66

    67. 67

    68. 68

    69. 69

    70. 70

    71. 71

    72. 72

    73. 73

    74. 74

    75. 75 Homework Problem 5.3-1 Problem 5.3-12 Problem 6.3-2 Problem 7.4-7 Problem 7.4-15 Problem 7.4-23

    76. 76

    77. 77 Stability Conditions for Thermodynamic Potentials 3-1.1 Intrinsic stability of thermodynamic systems

    78. 78

    79. 79

    80. 80

    81. 81

    82. 82

    83. 83

    84. 84

    85. 85 Le Chaterlier’s Principle and the Effects of Fluctuations 3-2.1 Le Chatelier’s principle

    86. 86

    87. 87

    88. 88

    89. 89 First-order Phase Transitions in Single-Component Systems 3-3.1 First-order & second-order phase transitions

    90. 90

    91. 91

    92. 92

    93. 93

    94. 94

    95. 95

    96. 96

    97. 97

    98. 98

    99. 99

    100. 100

    101. 101

    102. 102

    103. 103

    104. 104

    105. 105

    106. 106

    107. 107

    108. 108 Thermodynamic States near Critical Points 3-4.1 Features in the vicinity of the critical point

    109. 109

    110. 110

    111. 111

    112. 112

    113. 113 Homework Problem 9.1-1 Problem 9.3-3 Problem 9.4-11 Problem 9.7-1

    114. 114 Applications to Material Properties Contents 4-1 The general ideal gas 4-2 Small Deviations from Ideality—The Virial Expansion 4-3 Law of Corresponding States for Gases 4-4 Applications to Dilute Solutions—The van’t Hoff Relation and the Raoult’s law 4-H Homework

    115. 115 The general ideal gas 4-1.1 The essence of ideal gas behavior

    116. 116

    117. 117

    118. 118

    119. 119

    120. 120 Small Deviations from Ideality—The Virial Expansion 4-2.1 Virial expansion

    121. 121

    122. 122

    123. 123 Law of Corresponding States for Gases 4-3.1 Important observations for gases

    124. 124

    125. 125

    126. 126

    127. 127 Applications to Dilute Solutions—the van’t Hoff Relation and the Raoult’s law 4-4.1 the van’t Hoff relation for osmotic pressure

    128. 128

    129. 129

    130. 130

    131. 131 Homework Problem 13.2-2 Problem 13.5-2 Problem 13.5-3

    132. 132 Statistic Ensembles and Formulism Contents 5-1 The entropy representation—the Boltzmann’s law 5-1.1 Physical significance of entropy for closed system (15.1) 5-1.2 The Einstein model of a crystalline solid (15.2) 5-1.3 The two-state system (15.3); a polymer model (15.4) 5-2 The Canonical Formalism 5-2.1 The probability distribution (16.1) 5-2.2 The partition function (16.2) 5-2.3 The classical ideal gas (16.10) 5-3 Generalized Canonical Formulations 5-3.1 Entropy as a measure of disorder (17.1) 5-3.2 The grand canonical formalism (17.3)

    133. 133 The Entropy Representation—the Boltzmann’s law 5-1.1 Physical significance of entropy for closed system

    134. 134

    135. 135

    136. 136

    137. 137

    138. 138

    139. 139

    140. 140

    141. 141

    142. 142

    143. 143

    144. 144

    145. 145

    146. 146

    147. 147

    148. 148

    149. 149 The Canonical Formalism 5-2.1 The probability distribution

    150. 150

    151. 151

    152. 152

    153. 153

    154. 154

    155. 155

    156. 156

    157. 157

    158. 158

    159. 159

    160. 160

    161. 161

    162. 162

    163. 163

    164. 164

    165. 165

    166. 166 Generalized Canonical Formulations 5-3.1 Entropy as a measure of disorder

    167. 167

    168. 168

    169. 169

    170. 170

    171. 171

    172. 172

    173. 173

    174. 174

    175. 175

    176. 176

    177. 177

    178. 178

    179. 179

    180. 180 Homework Problem 15.1-1 Problem 15.2-1 Problem 15.4-4 Problem 16.1-1 Problem 16.1-4 Problem 16.2-1 Problem 16.10-4

    181. 181 Statistical Fluctuations and Solution Strategies Contents 6-1 Fluctuations 6-1.1 The probability distribution of fluctuations (19.1) 6-1.2 Moments and the energy fluctuations (19.2) 6-2 Quantum Fluids 6-2.1 Quantum particle-fermions and bosons (18.1) 6-2.2 The ideal Fermi fluid (18.2) 6-2.3 The ideal Bose fluid (18.5) 6-2.4 The classical limit and the quantum criterion (18.3) 6-2.5 The strong quantum regime: electrons in a metal (18.4) 6-2.6 Bose condensation (18.7)

    182. 182 Fluctuations 6-1.1 The probability distribution of fluctuations

    183. 183

    184. 184

    185. 185

    186. 186

    187. 187

    188. 188

    189. 189 Quantum Fluids

    190. 190

    191. 191

    192. 192

    193. 193

    194. 194

    195. 195

    196. 196

    197. 197

    198. 198

    199. 199

    200. 200

    201. 201

    202. 202

    203. 203

    204. 204

    205. 205

    206. 206

    207. 207

    208. 208

    209. 209

More Related