1 / 47

Patterns of Inheritance

Patterns of Inheritance. Chapter 12. Early Ideas of Heredity. Before the 20 th century, 2 concepts were the basis for ideas about heredity: -heredity occurs within species -traits are transmitted directly from parent to offspring

angie
Download Presentation

Patterns of Inheritance

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Patterns of Inheritance Chapter 12

  2. Early Ideas of Heredity Before the 20th century, 2 concepts were the basis for ideas about heredity: -heredity occurs within species -traits are transmitted directly from parent to offspring This led to the belief that inheritance is a matter of blending traits from the parents.

  3. Early Ideas of Heredity Botanists in the 18th and 19th centuries produced hybrid plants. When the hybrids were crossed with each other, some of the offspring resembled the original strains, rather than the hybrid strains. This evidence contradicted the idea that traits are directly passed from parent to offspring.

  4. TERMS FROM EARLY WORK

  5. Early Ideas of Heredity Gregor Mendel (BORN 1822-became a monk) -chose to study pea plants because: 1. other research showed that pea hybrids could be produced 2. many pea varieties were available 3. peas are small plants and easy to grow 4. peas can self-fertilize or be cross-fertilized

  6. MONASTERY YEARS • Initiated experiments on plant hybridization • Used his knowledge of botany and statistics • Studied only comparable traits such as: • Seed color • Plant height • Flower color and location

  7. Early Ideas of Heredity Mendel’s experimental method: 1. produce true-breeding strains for each trait he was studying 2. cross-fertilize true-breeding strains having alternate forms of a trait -perform reciprocal crosses as well 3. allow the hybrid offspring to self-fertilize and count the number of offspring showing each form of the trait

  8. Monohybrid Crosses Monohybrid cross: a cross to study only 2 variations of a single trait Mendel produced true-breeding pea strains for 7 different traits -each trait had 2 alternate forms (variations) -Mendel cross-fertilized the 2 true-breeding strains for each trait

  9. Monohybrid Crosses F1 generation (1st filial generation): offspring produced by crossing 2 true-breeding strains For every trait Mendel studied, all F1 plants resembled only 1 parent -no plants with characteristics intermediate between the 2 parents were produced

  10. Monohybrid Crosses F1 generation: offspring resulting from a cross of true-breeding parents F2 generation: offspring resulting from the self-fertilization of F1 plants dominant: the form of each trait expressed in the F1 plants recessive: the form of the trait not seen in the F1 plants

  11. Monohybrid Crosses F2 plants exhibited both forms of the trait in a very specific pattern: ¾ plants with the dominant form ¼ plant with the recessive form The dominant to recessive ratio was 3 : 1. Mendel discovered the ratio is actually: 1 true-breeding dominant plant 2 not-true-breeding dominant plants 1 true-breeding recessive plant

  12. Monohybrid Crosses gene: information for a trait passed from parent to offspring alleles: alternate forms of a gene homozygous: having 2 of the same allele heterozygous: having 2 different alleles

  13. Monohybrid Crosses genotype: total set of alleles of an individual PP = homozygous dominant Pp = heterozygous pp = homozygous recessive phenotype: outward appearance of an individual

  14. Monohybrid Crosses Principle of Segregation Two alleles for a gene segregate during gamete formation and are rejoined at random, one from each parent, during fertilization.

  15. Monohybrid Crosses Some human traits are controlled by a single gene. -some of these exhibit dominant inheritance -some of these exhibit recessive inheritance Pedigree analysis is used to track inheritance patterns in families.

  16. Dihybrid Crosses Dihybrid cross: examination of 2 separate traits in a single cross -for example: RR YY x rryy The F1 generation of a dihybrid cross (RrYy) shows only the dominant phenotypes for each trait.

  17. Dihybrid Crosses The F2 generation is produced by crossing members of the F1 generation with each other or allowing self-fertilization of the F1. -for example RrYy x RrYy The F2 generation shows all four possible phenotypes in a set ratio: 9 : 3 : 3 : 1

  18. Dihybrid Crosses Principle of Independent Assortment In a dihybrid cross, the alleles of each gene assort independently.

  19. Probability – Predicting Results Rule of addition: the probability of 2 mutually exclusive events occurring simultaneously is the sum of their individual probabilities. When crossing Pp x Pp, the probability of producing Pp offspring is probability of obtaining Pp (1/4), PLUS probability of obtaining pP (1/4) ¼ + ¼ = ½

  20. Probability – Predicting Results Rule of multiplication: the probability of 2 independent events occurring simultaneously is the PRODUCT of their individual probabilities. When crossing Rr Yy x RrYy, the probability of obtaining rr yy offspring is: probability of obtaiing rr = ¼ probability of obtaining yy = ¼ probability of rr yy = ¼ x ¼ =1/16

  21. Testcross Testcross: a cross used to determine the genotype of an individual with dominant phenotype -cross the individual with unknown genotype (e.g. P_) with a homozygous recessive (pp) -the phenotypic ratios among offspring are different, depending on the genotype of the unknown parent

  22. Extensions to Mendel Mendel’s model of inheritance assumes that: -each trait is controlled by a single gene -each gene has only 2 alleles -there is a clear dominant-recessive relationship between the alleles Most genes do not meet these criteria.

  23. Extensions to Mendel Polygenic inheritance occurs when multiple genes are involved in controlling the phenotype of a trait. The phenotype is an accumulation of contributions by multiple genes. These traits show continuous variation and are referred to as quantitative traits. For example – human height

  24. Extensions to Mendel Pleiotropy refers to an allele which has more than one effect on the phenotype. This can be seen in human diseases such as cystic fibrosis or sickle cell anemia. In these diseases, multiple symptoms can be traced back to one defective allele.

  25. Extensions to Mendel Incomplete dominance: the heterozygote is intermediate in phenotype between the 2 homozygotes. Codominance: the heterozygote shows some aspect of the phenotypes of both homozygotes.

  26. Extensions to Mendel The human ABO blood group system demonstrates: -multiple alleles: there are 3 alleles of the I gene (IA, IB, and i) -codominance: IA and IBare dominant to i but codominant to each other

  27. Multiple allele gametes • If three pairs of homologous chromosomes AaBbCc • Then resulting number of different gametes = 2 to 3rd power = 8 • So the possibility of each different gamete is 1/8.

  28. Extensions to Mendel The expression of some genes can be influenced by the environment. for example: coat color in Himalayan rabbits and Siamese cats -an allele produces an enzyme that allows pigment production only at temperatures below 30oC

  29. Extensions to Mendel

  30. Extensions to Mendel The products of some genes interact with each other and influence the phenotype of the individual. Epistasis: one gene can interfere with the expression of another gene

  31. Genotype Epistasis • Coat color in Labrador Retrievers • Coat varies from white to black • One allele has a “hiding” effect on another • 2 sets of alleles: • 1. dominant allele E determines if coat has dark color • 2. B determines how dark the color will be

  32. Allele interactions for coat color • ee = no color (yellow or white – eeBb or eeBB because color masked) • Chocolate = Eebb or EEbb • Black = EeBb or EEBB • Note: that the location of the gene on the allele can be referred to as loci or locus

More Related