360 likes | 406 Views
Coherent Multiscale Image Processing using Quaternion Wavelets. Wai Lam Chan M.S. defense. Committee: Hyeokho Choi, Richard Baraniuk, Michael Orchard. Image Location Information. Edges:. “location” “orientation”. Goal : Encode/Estimate location information
E N D
Coherent Multiscale Image Processing using Quaternion Wavelets Wai Lam Chan M.S. defense Committee: Hyeokho Choi, Richard Baraniuk, Michael Orchard
Image Location Information Edges: “location” “orientation” Goal: Encode/Estimate location information from phase (coherent processing)
Location and Phase d • Fourier phase to encode/analyze location • Linear phase change as signal shifts (Fourier Shift Theorem)
Image Geometry and Phase Rich’s picture Rich’s phase-only picture Rich’s phase + Cameraman’s amplitude • Global phase (no localization)
Local Fourier Analysis • Local Fourier analysis for “location” • Short time Fourier transform (Gabor analysis) • Local Fourier phase (relates to local geometry)
But conventional discrete wavelets are “Real” Lack of phase to encode geometry! Wavelet Analysis • “Multiscale” analysis • Sparse representation of piecewise smooth signals • Orthonormal basis / tight frame • Fast computation by filter banks
Short Time Fourier vs. Wavelet Short time Fourier Wavelet “Real”
Phase in Wavelets • Development of dual-tree complex wavelet transform (DT-CWT) DWT [e.g., Daubechies] 1-D HT / analytic signal 1-D DT-CWT [Lina, Kingsbury, Selesnick,…]
Phase in Wavelets • Development of DT-CWT and quaternion wavelet transform (DT-QWT) DWT [e.g., Daubechies] 1-D HT and analytic signal 1-D DT-CWT [Lina, Kingsbury, Selesnick,…] 2-D HT and analytic signal (complex / quaternion) DT-QWT 2-D DT-CWT [Chan, Choi, Baraniuk] [Kingsbury, Selesnick,…]
Major Thesis Contributions • QWT Construction • QWT Properties • Magnitude-phase representation • Shift Theorem • QWT Applications • Edge Estimation • Image Flow Estimation
Phase for Wavelets ? • Need to have quadrature component • phase shift of
Complex Wavelet • Complex wavelet transform (CWT) • [Kingsbury,Selesnick,Lina]
1-D Complex Wavelet Transform (CWT) Complex (analytic) wavelet Hilbert Transform wavelet = + j* +j -j +2
2-D Complex Fourier Transform (CFT) • Phase ambiguity • cannot obtain from phase shift
Quaternion Fourier Transform (QFT) [Bülow et al.] • Separate4 quadrature components • Organize as quaternion • Quaternions: • Multiplication rules: and
QFT Phase • Quaternion phase angles: Shift theorem • QFT shift theorem: • invariant to signal shift • linear to signal shift • encodes mixing of signal orientations
“Real” 2-D Wavelet Transform v u v u
“Real” 2-D Wavelet Transform HH HL LH LL
v v v v u u u u 2-D Hilbert Transform HT in u HT in v HT in both
v v v v u u u u 2-D Hilbert Transform
+j -j +j -j +1 -1 -j -j -1 +1 +j +j Quaternion Wavelets Hx Hy Hy Hx
Quaternion Wavelet Transform (QWT) • Quaternion basis function (HH) • 3 subbands (HH, HL, LH) v v v HH subband HL subband LH subband u u u
v QWT bases x u QWT Shift Theorem • Shift theorem approximately holds for QWT • where denotes the spectral center • Estimate (dx, dy) from • Edge estimation • Image flow estimation
QWT Phase for Edges • non-unique (dx, dy) for edges • Phase shift • non-unique : • (no change) d dy dx
QWT Magnitude for Edges v QWT basis u Edge model spectrum of edge HL subband magnitudes HH subband magnitudes
QWT Edge Estimation • Edge parameter (offset/orientation) estimation • edge offset • QWT magnitude edge orientation
Multiscale Image Flow Estimation • Disparity estimation in QWT domain • QWT Shift Theorem • Multiscale phase-wrap correction • Efficient computation (O(N))
Image Flow Example dy dx Image Shifts Image Flow
Multiscale Estimation Algorithm • Step 1: Estimate from change in QWT phase for each image block • Step 2: Estimate (dx, dy) for each scale • Bilinear Interpolation • Multiscale phase unwrapping algorithm • Average over previous scale and subband estimates to improve estimation
Multiscale Estimation Advantages • Multiscale phase unwrapping algorithm • Combine scale and subband estimates • to improve estimation dy coarse scale dx fine scale
Summary • Development of DT-CWT and quaternion wavelet transform (DT-QWT) DWT [e.g., Daubechies] 1-D HT and analytic signal 1-D DT-CWT [Lina, Kingsbury, Selesnick,…] 2-D HT and analytic signal (complex / quaternion) DT-QWT 2-D DT-CWT [Chan, Choi, Baraniuk] [Kingsbury, Selesnick,…]
Conclusions • Developed QWT for image analysis • Fast, “multiscale” • QWT phase and Shift Theorem • Multiscale flow estimation through QWT phase • Local QFT analysis (details in thesis) • Future Directions • Hypercomplex wavelets (3-D or higher) • Image compression [Ates,Orchard,…]