1 / 14

Cross-site running on TeraGrid using MPICH-G2

Cross-site running on TeraGrid using MPICH-G2. Presented by Krishna Muriki (SDSC) on behalf of Dr. Nick Karonis (NIU). What is MPICH-G2 ?. Full implementation of MPI-1.1 standard “Very little MPI-2 functionality” (client/server discussed later) Developed by Karonis and Toonen

anneke
Download Presentation

Cross-site running on TeraGrid using MPICH-G2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cross-site running on TeraGridusing MPICH-G2 • Presented byKrishna Muriki (SDSC) • on behalf of • Dr. Nick Karonis (NIU)

  2. What is MPICH-G2 ? • Full implementation of MPI-1.1 standard • “Very little MPI-2 functionality” • (client/server discussed later) • Developed by Karonis and Toonen • (Northern Illinois university and • Argonne National Laboratory) • Makes extensive use of Globus Services, • and therefore …. • MPICH-G2 is - ‘grid-enabled’ MPI

  3. How Does MPICH-G2 Work? Local MPI Local MPI MPICH-G2 TCP (Data conversion, if necessary) Computer B Computer A

  4. Should I use MPICH-G2? • Applications that are distributed by design • --- Scientific applications that need either • More compute power or • More memory • or both. • Applications that are distributed by nature • --- Remote visualization applications • --- Client/Server applications etc ….

  5. How to use MPICH-G2 on TG? • Five steps :( Assuming good SoftEnv and Globus environments ) • Add proper softkeys to your ~/.soft file. • (eg : +mpich-g2-intel or +mpich-g2-gcc) • Next on each TG site, compile & link your application • using one of MPICH-G2’s compilers • - mpicc, mpiCC, mpif77 or mpif90 • At a single TG site do : grid-proxy-init • Write your own Globus RSL file ( example later ) • Launch your application using MPICH-G2’s mpirun • command and your RSL file : • - mpirun –globusrsl myfile.rsl • - procs will not return from MPI_Init() untill all procs • have started executing on TG compute nodes.

  6. An Example RSL file + (&(resourceManagerContact=“tg-grid1.uc.teragrid.org/jobmanager-pbs_gcc") (count=10) (hostcount=“10:ia64-compute”) (project=“TG-STA044017N”) (jobtype=mpi) (environment=(GLOBUS_DUROC_SUBJOB_INDEX 0)) (executable=/homes/users/smith/myapp) ) (&(resourceManagerContact=“tg-login1.ncsa.teragrid.org/jobmanager-pbs_gcc") (count=5) (hostcount=“5:compute”) (jobtype=mpi) (environment=(GLOBUS_DUROC_SUBJOB_INDEX 1)) (executable=/homes/users/smith/myapp) ) (&(resourceManagerContact=“tg-login1.sdsc.teragrid.org/jobmanager-pbs_gcc ") (count=10) (jobtype=mpi) (environment=(GLOBUS_DUROC_SUBJOB_INDEX 2)) (executable=/users/smith/myapp) )

  7. Additional “grid” features • gridFTP --- “turn on” Globus’ gridFTP for inter-cluster messaging --- Increases bandwidth for large messages • Grid topology discovery --- Create MPI communicators based on where processes are running --- For example, place all processes running on SDSC-TG into one communicator

  8. gridFTP • #include <mpi.h> • int main(int argc, char *argv[]) { • int numprocs, my_id; • struct gridftp_params gfp; /* MPICH-G2 structure in mpi.h */ • MPI_Init(&argc, &argv); • MPI_Comm_rank(MPI_COMM_WORLD, &my_id); • if (my_id == 0 || my_id == 1) { • /* must set these three fields */ • gfp.partner_rank = (my_id ? 0 : 1); • gfp.nsocket_pairs = 64; • gfp.tcp_buffsize = 256*1024; • MPI_Attr_put(MPI_COMM_WORLD, MPICHX_PARALLELSOCKETS_PARAMETERS, &gfp); • } /* endif */ • /* • * from this point all messages exchanged between MPI_COMM_WORLD ranks 0 and 1 will be automatically • * partitioned and transported over parallel sockets (i.e., use gridFTP) • */ • MPI_Finalize(); • } /* end main() */

  9. Topology discovery • #include <mpi.h> • int main (int argc, char *argv[]) { • int me,flag; • MPI_Comm TG_site_comm; • int *depths, **colors; • MPI_Init(&argc, &argv); • MPI_Comm_rank(MPI_COMM_WORLD, &me); • MPI_Attr_get(MPI_COMM_WORLD, MPICHX_TOPOLOGY_DEPTHS, &depths, &flag); • MPI_Attr_get(MPI_COMM_WORLD, MPICHX_TOPOLOGY_COLORS, &colors, &flag); • /* creates new communicator TG_site_comm that groups procs based on TG site */ • MPI_Comm_split(MPI_COMM_WORLD, • (depths[me]==4 ? colors[me][3] : MPI_UNDEFINED), • 0, &TG_site_comm); • MPI_Finalize(); • } /* end main() */

  10. Some MPI-2 Functionality • MPICH-G2 supports the following functions from the MPI Standard 2.0 Server routines • MPI_Open_port • MPI_Close_port • MPI_Comm_accept • Client routines • MPI_comm_connect

  11. Example server • #include <mpi.h> • Int main(int argc, char *argv[]) { • int my_id; • char port_name[MPI_MAX_PORT_NAME]; • MPI_Comm newcomm; • MPI_Init(&argc, &argv); • MPI_Comm_rank(MPI_COMM_WORLD, &my_id); • if (my_id == 0) { • MPI_Open_port(MPI_INFO_NULL, port_name); /* “fills” port_name */ • } /* endif */ • MPI_Comm_accept(port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD, &newcomm); • if (my_id == 0) { • MPI_Send(&my_id, 1, MPI_INT, 0, 0, newcomm); • printf("after sending %d\n", my_id); • MPI_Close_port(port_name); • } /* endif */ • MPI_Finalize(); • } /* end main() */

  12. Example client • #include <mpi.h> • int main(int argc, char *argv[]) { • int passed_num; • int my_id; • char *port_name; • MPI_Comm newcomm; • MPI_Init(&argc, &argv); • MPI_Comm_rank(MPI_COMM_WORLD, &my_id); • port_name = argv[1]; • MPI_Comm_connect(port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD, &newcomm); • if (my_id == 0) • { • MPI_Status status; • MPI_Recv(&passed_num, 1, MPI_INT, 0, 0, newcomm, &status); • } /* endif */ • MPI_Finalize(); • } /* end main() */

  13. Coming Soon! • A complete re-write of MPICH-G2 • To be included in next MPICH release scheduled for June 2006 and then on the TG soon thereafter • Integrated with Globus Web Services • Reduced intra-cluster message latency • Multi-threaded (i.e., inter-cluster MPI_Isend/Irecv’s will truly overlap computation and communication) • More inter-cluster messaging options (e.g., reliable UDP-based, compression, encryption, etc.) • Later, full MPI-2 functionality

  14. For More Information • Visit the MPICH-G2 web page: • www.niu.edu/mpi • or • www.globus.org/mpi

More Related