1 / 17

Module 12 Operational Amplifiers – Part II

Module 12 Operational Amplifiers – Part II. Review from Operational Amplifiers I:. Negative input. Output. Positive input. Power Supply Voltages. Anatomy of an “Op-Amp”. V POS. – V NEG. v OUT. v +. A v ( v + – v – ). r in. v –. These features motivate the

annissa
Download Presentation

Module 12 Operational Amplifiers – Part II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Module 12Operational Amplifiers – Part II

  2. Review from Operational Amplifiers I: Negative input Output Positive input Power SupplyVoltages Anatomy of an “Op-Amp” VPOS –VNEG

  3. vOUT v+ Av(v+– v–) rin v– These features motivate the Ideal Op-Ampapproximation Equivalent model for the circuit inside an op-amp Dependent Source Model • rin is on the order of several Megohms: • Av is on the order of 105 to 106

  4. Vpos Upper Limit Range Lower Limit –Vneg Dependent Source Model • vOUT must lie between Vpos and –Vneg VPOS vOUT –VNEG • Otherwise, the op-amp becomes saturated. • Saturated op-amp  vOUT = Vpos or –Vneg limit

  5. VPOS –VNEG vOUT v+ rin =  Av = Very Large v– The Ideal Op-Amp Approximation rin=  –Vneg < VOUT < Vpos This model greatly simplifies op-amp analysis

  6. i+ = 0 i= 0 A Consequence of Infinite rin VPOS rin=  VNEG Currents i+ and ito (or from) input terminals are zero

  7. Defines the Linear Region of operation A Consequence of Large Av If vOUT lies between Vpos and –Vneg … (v+ v–)  0 VPOS –VNEG

  8. vOUT vOUT = = R1 +R2 R1 +R2 vIN vIN R1 R1 (works because i = 0) R1 R1 Via voltage division v– = vOUT vIN= vOUT R1 +R2 R1 +R2 When vOUT in linear region: –vneg< vOUT < vPos  Example: The Non-Inverting Amplifier Revisited vIN vOUT R2 i = 0 R1 Use the Ideal Op-Amp approximation: v  vIN  Done!

  9. i1 i = 0 vIN = vIN  v i1 = R1 R1 Via KCL R2 vOUT = vIN R1 vOUT =  vIN R2 R1 Example: The Inverting Amplifier Revisited + – i2 R2 vIN vOUT R1 Use the Ideal Op-Amp approximation: v  0 v+ = 0   Ohm’s Law i1 = i2 (with i = 0) vOUT =  i2 R2 =  i1 R2  Done!

  10. iF i1 i2 RF R1 R2 + _ v1 + _ v2 + – vOUT i1 + i2 = iF KCL: v1 v1 v2 v2   RF RF vOUT =  v1 + v2 i2 = i1 = iF = + R2 R1 R1 R2 R1 R2 vOUT =  iFRF Another Example: The Summation Amplifier + – Use the Ideal Op-Amp Approximation… Output is weighted, inverted sum of inputs

  11. iF i2 i1 RF R1 R2 v3 vn v1 R3 + + + + . . . _ _ _ _ v2 + – Rn vOUT vOUT =  v1 + v2 + v3 + …+ vn RF RF RF RF R1 R3 Rn R2 Can extend result to arbitrary number of input resistors: Output is weighted, inverted sum of inputs: iF = i1 + i2 + i3+ … + in

  12. R2 R1 + _ + – v1 R1 + vOUT _ v2 R2 Another Example: DifferenceAmplifier

  13. + – vOUT vOUT =  v1 R2 R1 1st Partial result for vOUT Use Superposition: R2 R1 + _ v1 R1 + _ v2 R2 Set v2 to zero i+ = 0  v+ = 0  v = 0 We have an inverting amplifier

  14. i+ + – vOUT R2 v+ = v2 R1 +R2 2nd Partial result for vOUT R2 R1 +R2 R1 +R2 R2 vOUT v+ = v2 = v2 =  R1 +R2 R1 R1 R1 Use Superposition, con’t: R2 R1 + _ v1 R1 + _ v2 R2 Set v1 to zero Via voltage division We have an non-inverting amplifier

  15. + – vOUT R2  vOUT = v2 v1 R1 R2 R2 R1 vOUT  = (v2 v1) R1 R2 R1 + _ v1 R1 + _ v2 R2 Add together the 2nd and 1st partial results: Amplifies difference between v2 and v1

  16. vOUT =  v1 + v2 + v3 + …+ vn RF RF RF RF R2 R1 R3 Rn R2 vOUT = (v2 v1) R1 Summary • Ideal Op-Amp Approximation simplifies circuit analysis • “Ideal” impliesrin =  andv+ = vin the linear region • Summation Amplifier • Difference Amplifier

  17. End of This Module Homework

More Related