1 / 23

Derivative=Díorthach

Finding the. Derivative=Díorthach. Cé chomh géar agus atá cnoc?. 1 ·4. 1 ·3. 0 ·3. –0 ·2. –1 ·4. 0 ·9. 1 ·0. –1 ·6. 1 ·7. 2. 0 ·8. 1. –1 ·9. 0 ·6. 0. Fána chlár scátála:. Is faide an clár…. … is lú cruinne an fána. Ag féachtaint ar phíosa beag. P.

annot
Download Presentation

Derivative=Díorthach

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Finding the Derivative=Díorthach

  2. Cé chomh géar agus atá cnoc? 1·4 1·3 0·3 –0·2 –1·4 0·9 1·0 –1·6 1·7 2 0·8 1 –1·9 0·6 0 Fána chlár scátála:

  3. Is faide an clár…. … is lú cruinne an fána

  4. Ag féachtaint ar phíosa beag P agus ag féachaint ar an bhfána ag pointe amháin…

  5. Gheobhfaimid luach níos cruinne… P Má bhogaimid na rothaí nios gaire le chéile

  6. Gheobhfaimid luach níos cruinne… P agus ag féachaint ar an bhfána ag pointe amháin…

  7. Sainmhíniú ar fhána: Is é fána ag pointe P ná teorainn na bhfánaí le roth ag P agus an roth eile ag dul i dtreo P. P

  8. lim y lim x→0 h→0 x f (x +h) – f (x) h Difreáil de réir na nbunphrionsabail

  9. Graf y = f(x) y=f (x) (x, y) P y x

  10. Anois tóg pointe fad ó P: y=f (x) (x +x, y +y) y (x, y) P y x x

  11. Cad é fána an líne seo? y=f (x) y2–y1 y x2–x1 x y P x

  12. y x Cad a tharlaíonn nuair a éiríonn x níos lú y P x

  13. y x Cad a tharlaíonn nuair a éiríonn x níos lú y P x

  14. y x Cad a tharlaíonn nuair a éiríonn x níos lú y P x

  15. y x Cad a tharlaíonn nuair a éiríonn x níos lú y P x

  16. y x Cad a tharlaíonn nuair a éiríonn x níos lú P y x

  17. y x Cad a tharlaíonn nuair a éiríonn x níos lú P Éiríonn an fána níos gaire fána na tadhaille

  18. lim y x→0 x dy dx Fána an tadhlaí ag an gcuar P f '(x)

  19. dy dx lim ∆x→0 ∆x ∆x ∆x ∆y ∆x = 2x Difreáil x2de réir na mbunphrionsal maidir le x :. 20 y=x2 Athraigh x go to x+Dx, agus athraigh y go y+Dy y+∆y =(x + ∆x)2 =(x + ∆x)(x + ∆x) =x2 +x∆x +x∆x +∆x2 y+ ∆y = x2+ 2x∆x +∆x2 Dealaigh y = x2 ∆y = 2x∆x + ∆x2 Roinn ar Dx Ceallaigh = 2x + ∆x Lig do Dx=0

  20. Ceisteanna Ardtéistiméirachta 2007 Q8 (b) x2 – 3x 2005 Q6 (b) 3x–x2 2004 Q8 (b) x2 +3x 2003 Q6 (b) x2 –2x 2001 Q8 (b) 3x2 –x 2000 Q6 (a) 7x+ 3

  21. dy dx lim ∆x→0 ∆x ∆x ∆x ∆x ∆y ∆x = 2x – 3 (b) Difreáil x2 -3x de réir na mbunphrionsal maidir le x . Each term inside the brackets changes sign 20 Let y=x2 – 3x Athraigh x go to x+Dx, agus athraigh y go y+Dy y+∆y = (x + ∆x)2– 3(x+ ∆x) =(x + ∆x)(x + ∆x) – 3(x + ∆x) = x2 +x∆x +x∆x +∆x2 – 3x – 3∆x y+ ∆y = x2+ 2x∆x +∆x2 – 3x – 3∆x Dealaigh y = x2 – 3x ∆y = 2x∆x + ∆x2 – 3∆x Roinn ar Dx Ceallaigh = 2x + ∆x – 3 Lig do Dx=0

  22. dy dx lim ∆x→0 ∆x ∆x ∆x ∆x ∆y ∆x = 2x+ 3 (b) Difreáil x2 +3x de réir na mbunphrionsal maidir le x . 20 Let y=x2+ 3x Athraigh x go to x+Dx, agus athraigh y go y+Dy y+∆y =(x + ∆x)2+ 3(x+ ∆x) =(x + ∆x)(x + ∆x) + 3(x + ∆x) =x2 +x∆x +x∆x +∆x2 + 3x + 3∆x y+ ∆y = x2+ 2x∆x +∆x2 + 3x + 3∆x Dealaigh y = x2 + 3x ∆y = 2x∆x + ∆x2 + 3∆x Roinn ar Dx Ceallaigh Lig do Dx=0 = 2x + ∆x +3

  23. dy dx lim ∆x→0 ∆x ∆x ∆x ∆x ∆y ∆x = 6x – 1 (b) Difreáil 3x2- -x de réir na mbunphrionsal maidir le x . Each term inside the brackets changes sign 20 Let y=3x2–x Athraigh x go to x+Dx, agus athraigh y go y+Dy y+∆y = 3(x+ ∆x)2– (x + ∆x) =3(x + ∆x)(x + ∆x) – (x + ∆x) = 3 (x2 + 2x∆x + x∆x +x∆x +∆x2) – x – ∆x y+ ∆y =3x2 + 6x∆x + 3∆x2 – x –∆x Dealaigh y = 3x2 – x 1 ∆y = 6x∆x –3∆x2 – ∆x Roinn ar Dx Ceallaigh = 6x – 3∆x – 1 Lig do Dx=0

More Related