520 likes | 804 Views
Fourier Synthesis. Sinusoidal Functions as “Building Blocks” for Spatial Vision. “Sinusoidal Function ” F( ) = sin( ). . sin( ). sin( 0 ) = 0.0. sin( 45 ) = 0.7. sin(9 0 ) = 1.0. sin( 135 ) = 0.7. sin(18 0 ) = 0.0. sin( 225 ) = - 0.7. sin(27 0 ) = - 1.0. sin( 315 ) = - 0.7.
E N D
Fourier Synthesis Sinusoidal Functions as “Building Blocks”for Spatial Vision
“Sinusoidal Function” F() = sin() sin()
sin() F(x) = sin(x)
Two-dimensional F(x,y) Vertical position (y) Horizontal position (x)
Two-dimensional F(x,y) Vertical position (y) Horizontal position (x)
F(x) = sin(x)+1/3 sin(3x) +1/5 sin(5x) +1/7 sin(7x) +1/9 sin(9x)
F(x) = sin(x)+1/3 sin(3x) +1/5 sin(5x) +1/7 sin(7x) +1/9 sin(9x) +1/11 sin(11x)
F(x) = sin(x)+ 1/3 sin(3x) + 1/5 sin(5x) + 1/7 sin(7x) + 1/9 sin(9x) + 1/11 sin(11x) + 1/13 sin(13x)
F(x) = sin(x)+1/3 sin(3x) +1/5 sin(5x) +1/7 sin(7x) + 1/9 sin(9x) + …...+1/25 sin(25x)
F(x) = 1sin(1x)+1/3 sin(3x) +1/5 sin(5x) +1/7 sin(7x) + 1/9 sin(9x) + …...+1/25 sin(25x) [freq components]
F() = (1 ,1)+(1/3 ,3) +(1/5 ,5) + (1/7 ,7) + (1/9,9) + …...
F() = 1, 0, 1/3, 0, 1/5 , 0, 1/7 , 0, 1/9, …... “Frequency domain” “Spatial domain”