410 likes | 551 Views
Neutron Matter and Binding Energies with a New Gogny Force. M. Girod, F.Chappert , CEA Bruyères-le-Châtel. Purpose of our study. , r 0 =0.16 fm -3. D1S Gogny force does not reproduce the EOS for neutron matter. Fit NM with Skyrme forces: PhD E. Chabanat Sly4. Contents.
E N D
Neutron Matter and Binding Energies with a New Gogny Force M. Girod, F.Chappert, CEA Bruyères-le-Châtel
Purpose of our study , r0=0.16 fm-3 D1S Gogny force does not reproduce the EOS for neutron matter Fit NM with Skyrme forces: PhD E. Chabanat Sly4
Contents I) The fit to Neutron Matter EOS New Gogny force: D1N II) Properties of D1N in nuclei
I) The fit to Neutron Matter EOS New Gogny force: D1N
The Gogny force 14 parameters (Wi, Bi, Hi, Mi, mi) for i=1,2; t0, x0, a, Wls
14 parameters 14 parameters 14 equations • B.E. and radii: 16O et 90Zr G.S. properties • 2 pairing matrix elements pairing properties • 48Ca: sym=e2sN - e2sP N-P asymmetry • …………. 14 parameters determined Test of the interaction: r0 , E0, K, Esurf, meff, Esym…. ? parameter « sym » Neutron Matter
Link between the parameter symand the Neutron Matter EOS? sym=e2sN - e2sP in 48Ca
Results in neutron matter: D1S, D1N Results in nuclear matter with D1N?
Nuclear matter properties D1S-D1N Results in nuclei with D1N?
II) Properties of D1N in nuclei 1) Pairing properties 2) Binding energies
II) Properties of D1N in nuclei 1) Pairing properties
Pairing properties: D1, D1S, D1N Pairing gap (Satula et al.) , A odd correlations
II) Properties of D1N in nuclei 2) Binding energies
D1S D1N Binding Energies: Sn isotopes DE=EHFB-Eexp ? Neutron Matter fitDrift of Binding Energies
D1S D1N Binding Energies: Sm isotopes DE=EHFB-Eexp
Binding Energies DB=BHFB-Bexp
Conclusion Aim: build a new Gogny force which fits Neutron Matter EOS D1N Properties in nuclei: I) PAIRING Same pairing properties as D1S if not better (moments of inertia) II) BINDING ENERGIES (B.E.) The drift of B.E. with N has disappeared Other calculations are being done: beyond mean-field D1N should be soon validated: D1S D1N
Acknowledgements Nuclear Structure Theory group: J.F. Berger, M.Girod B.Ducomet, H.Goutte, S.Peru, N.Pillet, V.Rotival
Results in neutron matter: D1S, D1N Neutron Matter EOS with Gogny forces:
Pairing properties Experiment: pairing force ~ bare force (Paris, AV18, ….) Scattering lengths S=0, T=1: 18.50 fm Experimental value 13.51 fm D1 12.12 fm D1S 10.51 fm D1N
Semi-empirical (Weiszäcker) mass formula Empirical values: av=-15.68, as=18.56, ac=0.717, aI=28.1 [MeV] Calculation of the coefficients (av,as,aI) with the built interaction?
Pairing properties Full HFB calculation Odd A: blocking approximation is used Deviation with experiment: Blocking approximation B.E. of odd nuclei under-estimated when quasi-particle-vibration coupling present Kuo et al: few hundred keV correction
Pairing properties Full HFB calculation Odd A: blocking approximation is used Deviation with experiment: Blocking approximation B.E. of odd nuclei under-estimated when quasi-particle-vibration coupling present Kuo et al: few hundred keV correction
Inertia momenta in 232Th w1 w2 w1 w2
kf kf f(rij) f(rij) Neutron Matter EOS:the variational method |F>: non interacting WF Trial wave-function: Variational procedure: f y f(rij) is varied until Evar is minimum
f(rij) f(rij) y
Pairing properties: D1N , A odd ~200 keV
Binding Energies: D1S DB=BHFB-Bexp
Binding Energies DB=BHFB-Bexp
Binding Energies: D1S DB=BHFB-Bexp
Binding Energies DB=BHFB-Bexp
Binding Energies DB=BHFB-Bexp
Results in neutron matter: D1S, D1N Neutron Matter EOS with Gogny forces:
Pairing properties: D1 Pairing gap (Satula et al.) , A odd ~300 keV
1st excited states GS energy Odd nucleus correlations Corr. DEeven DEcorr ? Exp. DEodd GS even odd Beyond HFB HFB HFB Pairing properties