1 / 48

Short baseline neutrino experiments

Short baseline neutrino experiments. Outline 1. LSND 2 . MiniBooNE 3 . OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino search 7 . Conclusion. Teppei Katori Queen Mary, University of London NuPhys2013, Institute of Physics, London, UK, Dec. 19, 2013. 1. LSND

aquila
Download Presentation

Short baseline neutrino experiments

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Short baseline neutrino experiments Outline 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino search 7. Conclusion Teppei Katori Queen Mary, University of London NuPhys2013, Institute of Physics, London, UK, Dec. 19, 2013 Teppei Katori

  2. 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino search 7. Conclusion Teppei Katori

  3. LSND Collaboration, PRD64(2001)112007 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino L/E~30m/30MeV~1 1. LSND Beam - Decay-At-Rest pion beam - No timing information Detector - Liquid scintillator with PMTs - Prompt positron signal and delayed neutron capture signal Teppei Katori

  4. LSND Collaboration, PRD64(2001)112007 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 1. LSND Beam - Decay-At-Rest pion beam - No timing information Detector - Liquid scintillator with PMTs - Prompt positron signal and delayed neutron capture signal Data is consistent with two massive neutrino oscillation model with Dm2~1eV2 87.9 ± 22.4 ± 6.0 (3.8.s) Teppei Katori

  5. 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino search 7. Conclusion Teppei Katori

  6. MiniBooNE collaboration,PRD79(2009)072002,NIM.A599(2009)28 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino Magnetic focusing horn primary beam secondary beam tertiary beam (8 GeV protons) (1-2 GeV pions) (800 MeV nm , 700 MeV anti-nm) 2. MiniBooNE MiniBooNE is a short-baseline neutrino oscillation experiment at Fermilab. Booster Neutrino Beamline (BNB)creates ~800(700)MeV neutrino(anti-neutrino) by pion decay-in-flight. Cherenkov radiation from the charged leptons are observed by MiniBooNE Cherenkov detector to reconstruct neutrino energy. L/E~500m/500MeV~1 MiniBooNE detector FNAL Booster ~520m 1280 of 8” PMT Teppei Katori

  7. MiniBooNE collaboration,PRL110(2013)161801 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 2. MiniBooNE MiniBooNE observed event excesses in both mode Neutrino mode 162.0±28.1 ± 38.7 (3.4s) Antineutrino mode 78.9±20.0 ± 20.3 (2.8s) Teppei Katori

  8. MiniBooNE collaboration,PRL110(2013)161801 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 2. MiniBooNE MiniBooNE observed event excesses in both mode Neutrino mode 162.0±28.1 ± 38.7 (3.4s) Antineutrino mode 78.9±20.0 ± 20.3 (2.8s) ne from m decay is constrained from nmCCQE measurement MiniBooNE collaboration PRD81(2010)092005 p m nm m e nm ne Teppei Katori

  9. MiniBooNE collaboration,PRL110(2013)161801 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino SciBooNE 3 track event 2. MiniBooNE MiniBooNE observed event excesses in both mode Neutrino mode 162.0±28.1 ± 38.7 (3.4s) Antineutrino mode 78.9±20.0 ± 20.3 (2.8s) ne from m decay is constrained from nmCCQE measurement SciBooNE collaboration PRD84(2011)012009 ne from K decay is constrained from high energy nm event measurement in SciBooNE Teppei Katori

  10. MiniBooNE collaboration,PRL110(2013)161801 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 2. MiniBooNE NCpo event Asymmetric decay MiniBooNE observed event excesses in both mode Neutrino mode 162.0±28.1 ± 38.7 (3.4s) Antineutrino mode 78.9±20.0 ± 20.3 (2.8s) po po ne from m decay is constrained from nmCCQE measurement MiniBooNE collaboration PLB664(2008)41 ne from K decay is constrained from high energy nm event measurement in SciBooNE po overlap Asymmetric po decay is constrained from measured CCpo rate (pog) Teppei Katori

  11. MiniBooNE collaboration,PRL110(2013)161801 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 2. MiniBooNE anomaly mediated triangle diagram MiniBooNE observed event excesses in both mode Neutrino mode 162.0±28.1 ± 38.7 (3.4s) Antineutrino mode 78.9±20.0 ± 20.3 (2.8s) radiative D-decay n n Z g D ne from K decay is constrained from high energy nm event measurement in SciBooNE N N Hill,PRD81(2010)013008 Zhang and Serot,PLB719(2013)409 Wang et al.,arXiv:1311.2151 Radiative D-decay (DNg) rate is constrained from measured NCpo n n Z Asymmetric po decay is constrained from measured CCpo rate (pog) g w N N Teppei Katori

  12. MiniBooNE collaboration,PRL110(2013)161801 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 2. MiniBooNE MiniBooNE observed event excesses in both mode Neutrino mode 162.0±28.1 ± 38.7 (3.4s) Antineutrino mode 78.9±20.0 ± 20.3 (2.8s) ne from m decay is constrained from nmCCQE measurement dirt rate is measured from dirt enhanced data sample ne from K decay is constrained from high energy nm event measurement in SciBooNE Radiative D-decay (DNg) rate is constrained from measured NCpo Asymmetric po decay is constrained from measured CCpo rate (pog) Teppei Katori

  13. MiniBooNE collaboration,PRL110(2013)161801 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 2. MiniBooNE MiniBooNE observed event excesses in both mode Neutrino mode 162.0±28.1 ± 38.7 (3.4s) Antineutrino mode 78.9±20.0 ± 20.3 (2.8s) ne from m decay is constrained from nmCCQE measurement dirt rate is measured from dirt enhanced data sample ne from K decay is constrained from high energy nm event measurement in SciBooNE Radiative D-decay (DNg) rate is constrained from measured NCpo All backgrounds are measured in other data sample and their errors are constrained! Asymmetric po decay is constrained from measured CCpo rate (pog) Teppei Katori

  14. 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 2. What’s next? Although MiniBooNE observed event excesses in both mode, the data don’t accept LSND result strongly under the two massive neutrino oscillation model - Antineutrino mode excess agrees with LSND, but the excess is weaker (2.8s) - Neutrino mode excess is stronger (3.4s), but the energy distribution is lower - MiniBooNE cannot distinguish electron and photon - Check LSND result again  better DAR-pion beam - Check MiniBooNE result again  e/g separation (neCCQE/NCpo separation) Teppei Katori

  15. 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 2. What’s next? Although MiniBooNE observed event excesses in both mode, the data don’t accept LSND result strongly under the two massive neutrino oscillation model - Antineutrino mode excess agrees with LSND, but the excess is weaker (2.8s) - Neutrino mode excess is stronger (3.4s), but the energy distribution is lower - MiniBooNE cannot distinguish electron and photon - Check LSND result again  better DAR-pion beam  OscSNS - Check MiniBooNE result again  e/g separation (neCCQE/NCpo separation)  MiniBooNE+  MicroBooNE Teppei Katori

  16. 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino search 7. Conclusion Teppei Katori

  17. OscSNS collaboration,arXiv:1307.7097 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 3. OscSNS Spallation Neutron Source (SNS), Oak Ridge National Laboratory (ORNL) - 1.4MW, 1.3GeV pulsed-proton beam - 695ns, 60Hz beam pulse (this is what LSND didn’t have) - neutrinos are free! Teppei Katori

  18. OscSNS collaboration,arXiv:1307.7097 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 3. OscSNS Spallation Neutron Source (SNS), Oak Ridge National Laboratory (ORNL) - 1.4MW, 1.3GeV pulsed-proton beam - 695ns, 60Hz beam pulse (this is what LSND didn’t have) - neutrinos are free! LSND-like detector - 886 ton of mineral oil + PBD - 4290 8-inch PMTs (25% coverage) - 60m from the target Comparing with LSND - 5 times more mass - twice more neutrinos - 1000 times lower duty cycle - half of neutrino background  can expect 100-200 anti-ne candidates/year! (~50 backgrounds) Status - whitepaper was submitted to DOE SNS target OscSNS detector Teppei Katori

  19. Harada et al.,arXiv:1310.1437 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 3. OscSNS at J-PARC J-PARC Material and Life science experimental Facility (MLF) - 1MW, 3.0GeV pulsed-proton beam - 80ns, 25Hz beam pulse - background measurement was performed Status - Proposal will be submitted to MLF PAC (January 2014) ~17m OscSNS at ESS (European Spallation Source) - 5MW, beam available ~2019, full power ~2025 - 2.86ms, 14Hz beam pulse (not suitable?)  There is a chance to add neutrino facilities? Teppei Katori

  20. 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 3. OscSNS at ESS OscSNS at ESS (European Spallation Source) - 5MW, beam available ~2019, full power ~2025 - 2.86ms, 14Hz beam pulse - There is a chance to add neutrino facilities? (detector hall) Elena Wildner (CERN) Teppei Katori

  21. 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino search 7. Conclusion Teppei Katori

  22. MiniBooNE+ collaboration,arXiv:1310.0076 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 4. MiniBooNE+ MiniBooNEwith neutron tagging - add PPO (scintillator), total cost ~$75k - delayed (t~186ms) neutron capture is observed n + p  d + g (2.2MeV) Physics Excesses observed by MiniBooNE could be either electrons (ne oscillation candidate) or gamma rays (background). If that is gamma rays from NC processes, we expect accompanied neutron signals (in neutrino mode) Background Signal NCpo production (neutron rate ~50%) neCCQE interaction (neutron rate <10%) NCg production (neutron rate ~50%) Teppei Katori

  23. MiniBooNE+ collaboration,arXiv:1310.0076 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 4. MiniBooNE+ MiniBooNEwith neutron tagging - add PPO (scintillator), total cost ~$75k - delayed (t~186ms) neutron capture is observed n + p  d + g (2.2MeV) Physics Excesses observed by MiniBooNE could be either electrons (ne oscillation candidate) or gamma rays (background). If that is gamma rays from NC processes, we expect accompanied neutron signals (in neutrino mode) MiniBooNE+ ne candidate events standard cuts Flux normalisation with Ng.s. b+-decay nm+ 12C  m-+ Ng.s. Ng.s. b+-decay with endpoint energy 16.3MeV, lifetime 15.9ms, with well known cross section. (4% of ~250 MeV nm interact with this) Status - Proposal was submitted to the Fermilab PAC (Jan. 2014) with neutron tagging Teppei Katori

  24. 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino search 7. Conclusion Teppei Katori

  25. 5. Liquid Argon Time Projection Chamber (LArTPC) The principle of LArTPC - 3D track reconstruction Bo Yu (BNL) Teppei Katori

  26. 5. Liquid Argon Time Projection Chamber (LArTPC) The principle of LArTPC - 3D track reconstruction Bo Yu (BNL) Charged particle tracks ionize Argon atoms 40Ar n Teppei Katori

  27. 5. Liquid Argon Time Projection Chamber (LArTPC) The principle of LArTPC - 3D track reconstruction Bo Yu (BNL) Charged particle tracks ionize Argon atoms Scintillation light (~ns) is detected by PMTs at same time Teppei Katori

  28. 5. Liquid Argon Time Projection Chamber (LArTPC) The principle of LArTPC - 3D track reconstruction Bo Yu (BNL) Then ionized electrons are drifted to anode wires (~ms) Teppei Katori

  29. 5. Liquid Argon Time Projection Chamber (LArTPC) The principle of LArTPC - 3D track reconstruction Bo Yu (BNL) Then ionized electrons are drifted to anode wires (~ms) Electrons near the wires are collected first, and electrons far from the wires are collected last, so drift coordinate information is converted to electron drift time (time is projected) Teppei Katori

  30. Karagiorgi,arXiv:1304.2083 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino Previous talk (Robert Wilson) 5. MicroBooNE 100% Physics Path to the large LArTPC in USA - half physics, half R&D Captain LArSoft LArXXX Material test stand “LUKE” (Fermilab) LAr1 MicroBooNE LAPD 50%R&D 50%Physics LArIAT ArgoNeuT Electronics test stand “Bo” (Fermilab) LBNE 35ton 100% R&D Yale TPC 2007 2008 2010 2013 20?? Teppei Katori

  31. Karagiorgi,arXiv:1304.2083 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 5. MicroBooNE Path to the large LArTPC in USA - half physics, half R&D - 89 ton TPC volume - 3 wire planes, 3mm pitch - cold electronics - PMT trigger system - surface operation MicroBooNE is there! (beam data from 2014) Teppei Katori

  32. 5. MicroBooNE Path to the large LArTPC in USA - ArgoNeuT shows possible e/g separation ArgoNeuT neCC candidate event Teppei Katori

  33. Karagiorgi,arXiv:1304.2083 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 5. MicroBooNE Highest resolution neutrino detector In principle, electron and gamma can be separated - dE/dX (gamma has twice of electron) - vertex to shower start point distance Status - Detector installation ongoing - beam data is expected from 2014 MicroBooNE electron like sample If MiniBooNE excess is electron Energy loss in the first 24mm of track: 250MeV single electron vs 250MeV gamma (MC truth information) MicroBooNEgamma like sample If MiniBooNE excess is gamma Teppei Katori

  34. 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino search 7. Conclusion Teppei Katori

  35. Neutrino working group whitepaper,arXiv:1310.4340 Light Sterile Neutrino whitepaper,arXiv:1204.5379 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 6. Sterile neutrino search Assuming LSND excess is due to Dm2~1eV2 sterile neutrinos - There are massive amount of proposals to search 1eV2 sterile neutrinos - Roughly 3 main ideas, radioactive source with very short baseline, reactor neutrinos, and traditional decay-in-flight neutrino experiments Teppei Katori

  36. Neutrino working group whitepaper,arXiv:1310.4340 Light Sterile Neutrino whitepaper,arXiv:1204.5379 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 6. Sterile neutrino search Assuming LSND excess is due to Dm2~1eV2 sterile neutrinos - There are massive amount of proposals to search 1eV2 sterile neutrinos - Roughly 3 main ideas, radioactive source with very short baseline, reactor neutrinos, and traditional decay-in-flight neutrino experiments Gallium anomaly motivated radioactive CeLAND Daya Bay+ SOX BEST LENS-sterile RICOCHET SAGE+ SNO++ etc Teppei Katori

  37. Neutrino working group whitepaper,arXiv:1310.4340 Light Sterile Neutrino whitepaper,arXiv:1204.5379 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 6. Sterile neutrino search Assuming LSND excess is due to Dm2~1eV2 sterile neutrinos - There are massive amount of proposals to search 1eV2 sterile neutrinos - Roughly 3 main ideas, radioactive source with very short baseline, reactor neutrinos, and traditional decay-in-flight neutrino experiments reactor anomaly motivated radioactive reactor PROSPECT STEREO DANSS SCRAAM Nucifer NIST etc Teppei Katori

  38. Neutrino working group whitepaper,arXiv:1310.4340 Light Sterile Neutrino whitepaper,arXiv:1204.5379 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 6. Sterile neutrino search Assuming LSND excess is due to Dm2~1eV2 sterile neutrinos - There are massive amount of proposals to search 1eV2 sterile neutrinos - Roughly 3 main ideas, radioactive source with very short baseline, reactor neutrinos, and traditional decay-in-flight neutrino experiments LAr1 LAr1-ND MiniBooNE+ BooNE ICARUS/NESSiE MINOS+ INO GLADE etc radioactive reactor p-DIF Teppei Katori

  39. Neutrino working group whitepaper,arXiv:1310.4340 Light Sterile Neutrino whitepaper,arXiv:1204.5379 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 6. Sterile neutrino search Assuming LSND excess is due to Dm2~1eV2 sterile neutrinos - There are massive amount of proposals to search 1eV2 sterile neutrinos - Roughly 3 main ideas, radioactive source with very short baseline, reactor neutrinos, and traditional decay-in-flight neutrino experiments OscSNS OScSNS@JPARC OSCSNS@ESS LSND reloaded etc radioactive reactor p-DAR p-DIF Teppei Katori

  40. Neutrino working group whitepaper,arXiv:1310.4340 Light Sterile Neutrino whitepaper,arXiv:1204.5379 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 6. Sterile neutrino search Assuming LSND excess is due to Dm2~1eV2 sterile neutrinos - There are massive amount of proposals to search 1eV2 sterile neutrinos - Roughly 3 main ideas, radioactive source with very short baseline, reactor neutrinos, and traditional decay-in-flight neutrino experiments IsoDAR KDAR radioactive reactor p-DAR p-DIF Other DAR IsoDAR collaboration, PRL109(2012)141802 Spitz, PRD85(2012)093020 Teppei Katori

  41. Neutrino working group whitepaper,arXiv:1310.4340 Light Sterile Neutrino whitepaper,arXiv:1204.5379 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 6. Sterile neutrino search Assuming LSND excess is due to Dm2~1eV2 sterile neutrinos - There are massive amount of proposals to search 1eV2 sterile neutrinos - Roughly 3 main ideas, radioactive source with very short baseline, reactor neutrinos, and traditional decay-in-flight neutrino experiments nuSTORM VLENF radioactive reactor p-DAR p-DIF Other DAR m-storage ring Next talk (Alan Bross) Teppei Katori

  42. Neutrino working group whitepaper,arXiv:1310.4340 Light Sterile Neutrino whitepaper,arXiv:1204.5379 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 6. Sterile neutrino search Assuming LSND excess is due to Dm2~1eV2 sterile neutrinos - There are massive amount of proposals to search 1eV2 sterile neutrinos - Roughly 3 main ideas, radioactive source with very short baseline, reactor neutrinos, and traditional decay-in-flight neutrino experiments radioactive reactor p-DAR p-DIF Other DAR m-storage ring Non-proliferation R&D LArTPCR&D DAEdALUS R&D n-factory R&D Teppei Katori Sterile neutrino experiments offer R&D for future experiments

  43. 7. Conclusions There are variety of projects to look for short baseline neutrino oscillations p-DAR beam experiments can directly test LSND signals Neutrino detector capable to distinguish CC and NC (MiniBooNE+) or electron and gamma (MicroBooNE) in Booster neutrino beamline can test MiniBooNE excesses R&D experiments of future long baseline experiments (LArTPC, DAEdALUS, neutrino factory) play important role Thank you for your attention! Teppei Katori

  44. Backup Teppei Katori

  45. LSND Collaboration, PRD64(2001)112007 1. LSND 2. MiniBooNE 3. OscSNS 4. MiniBooNE+ 5. MicroBooNE 6. Sterile neutrino 1. LSND Beam - Decay-At-Rest pion beam - No timing information Detector - Liquid scintillator with PMTs - Prompt positron signal and delayed neutron capture signal Data is consistent with two massive neutrino oscillation model with Dm2~1eV2 87.9 ± 22.4 ± 6.0 (3.8.s) Better timing with DAR-pion beam is necessary to improve LSND Teppei Katori

  46. Palamara, NuInt12 5. ArgoNeuT Teppei Katori

  47. Palamara, NuInt12 5. ArgoNeuT Teppei Katori

  48. u v y Charge Signal Formation Drift Distance (cm) Time (ms) Bo Yu (BNL) U Induction (small, bipolar) V Induction (small, bipolar) Y Collection (large, unipolar) Current Out of Wire 4.5mm Y 5mm U,V ArgoNeuT 1 MIP peak ~ 26 ADC counts Noise rms ~ 1 ADC count

More Related