1 / 36

Short Baseline Reactor Experiments

Short Baseline Reactor Experiments. STERILE NEUTRINOS at the CROSSROADS VirginiaTech, September 25-28, 2011. Yves Déclais, Lyon university. Short Baseline Reactor Experiments. Introduction to reactor experiments First batch of reactor neutrino anomalies : 1975-1985

Download Presentation

Short Baseline Reactor Experiments

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Short Baseline Reactor Experiments STERILE NEUTRINOS at the CROSSROADS VirginiaTech, September 25-28, 2011 Short Baseline Reactor Experiments(Yves Déclais) Yves Déclais, Lyon university

  2. Short Baseline Reactor Experiments • Introduction to reactor experiments • First batch of reactor neutrino anomalies : 1975-1985 • Savannah River deuterium experiment • ILL neutrino experiment • Bugey I experiment • Systematical studies : 1985-1996 • Gosgen, Rovno, Krasnoyarsk, SRP, Bugey 3 • High precision benchmark : • Bugey 3 : shape of the neutrino energy spectrum • Bugey 4 : absolute neutrino flux from reactors • Application to the long baseline experiments : CHOOZ • Conclusions Short Baseline Reactor Experiments(Yves Déclais)

  3. Nuclear reactors : best source for detecting neutrinos • fission bomb : ~8 1023 /Kt • nuclear reactor : ~2 1020  /Gwth /sec As you recall, we planned to use a nuclear explosion for the source because of background difficulties. Only last week it occurred to us that background problems could be reduced to the point where a Hanford pile would suffice by counting only delayed coincidences between the positron pulse and neutron capture pulse. Fred Reines: Letter to E. Fermi , October 4, 1952 Answer from Fermi, October 8 Certainly your new method should be much simpler to carry out and the great advantage that the measurement can be repeated any number of times Large R&D for PMTs and Liquid Scintillator production Short Baseline Reactor Experiments(Yves Déclais)

  4. Reactor Anti-neutrinos detection • Signature: Delayed coincidence • prompt signal : β+ • delayed signal : neutron capture Detectected spectrum X section • Background: • γ interactions • fast neutrons from μ spallation Production spectrum Short Baseline Reactor Experiments(Yves Déclais)

  5. First Attempt of Reactor Anti-neutrinos detection Hanford experiment : 1953 first homogeneous detector 300 l Cd loaded liquid scintillator  neutron capture time 2.2 μsec Viewed by 90 2-inch PMTs Passive shielding : lead, paraffin, water Active shielding : Geiger Mueller counters Correlated bkgd studied with emulsion plates Pile up : 2.55  0.15 evts/min Pile down : 2.14  0.13 evts/min Signal : 0.41  0.20 evts/min Expected : 0.2 ( assuming σ = 6 10-20 barns ) Also used as : ‘ ‘ whole body radiation detector : HUMCO I & II ‘’ Ref: Los Alamos Science 23, p 276, 1995 Short Baseline Reactor Experiments(Yves Déclais)

  6. First Detection of Reactor Anti-neutrinos Reactor power 700 Mw Distance from reactor : 11m Overburden : 12m Better passive shielding Liquid scintillator cosmic veto Cd loaded water target: 2x200 l. Overall efficiency : 10% Savannah River experiment : starting 1955 New approach with a more selective detector for better β+ and neutron signature ( decreasing n detection efficiency by 1/3 ) Neutrino signal : 3  0.2 /hour Replacing Water target by Cd Loaded LS 1.4 m3 : rate : 364 evts/hour S/B : 1/5 Short Baseline Reactor Experiments(Yves Déclais)

  7. Knowledge of the of the Expected Reactor Anti-neutrinos Rate Reactor operation ( σ 1% ) Nexpected =(Pth)x(E/fission)-1x(N/fission)x(Δ)x(σ)x(Nprotons)x(Eff.) 238U, 235U, 239Pu, 241Pu from Reactor Operation For power reactor The uncertainty on N/fission is the dominant term:  cancelled by comparing the flux at 2 distances Short Baseline Reactor Experiments(Yves Déclais)

  8. First Batch of Reactor Anti-neutrinos Anomalies 1975-1985 • SRP  deuterium experiment • ILL  experiment • Bugey I experiment • Further verifications Short Baseline Reactor Experiments(Yves Déclais)

  9. allowed 1) SRP  deuterium experiment (1975-1980) Normalization through the ‘ncd’ reaction: Less sensitive to the knowledge of the  flux (1st order !) R= (ccd/ncd)measured / (ccd/ncd)expected • distance 11.2 m • Pth 2000 MWth RSRP = 0.62  0.16 (1980) Short Baseline Reactor Experiments(Yves Déclais)

  10. 2) ILL  experiment ( 1980-1981) ILL  experiment 1980-1981 • distance 8.76 m • Pth ’57’ ‘ MWth • 93.5% enriched 235U reactor core Short Baseline Reactor Experiments(Yves Déclais)

  11. Mostly used to disprove d result from Reines Short Baseline Reactor Experiments(Yves Déclais)

  12. First Common Fit by a theorist … 1981-1983 Indications Of Neutrino Oscillations From An Analysis Of Reactor Experiments Performed at Different Distances.D. Silverman, (UC, Irvine) , A. Soni, (UCLA) UCI-81-35, UCLA/81/TEP/15, Nov 1981 Phys.Rev.D27:58,1983 • Fitting: • SRP (6.5 m & 11.2 m) on proton • ILL (8.7 m ) on proton • SRP (1.2 m ) on deuteron Short Baseline Reactor Experiments(Yves Déclais)

  13. Pth 2800 MW 13.6 m 18.3 m 3) Bugey I experiment ( 1982-1984) He3 chambers • carbon copy of the ILL detector • He3 chamber from ILL • improved shielding (?) • internal layer of low activity Pb Target cells Movable detector Short Baseline Reactor Experiments(Yves Déclais)

  14. Common solution with Silverman’s analysis !? Excluded through The shape analysis R18.3/13.6 = 0.907 .014stat .028syst Allowed through the rate analysis Short Baseline Reactor Experiments(Yves Déclais)

  15. 4) Further experimental verifications : • Bugey II program •  d setup • ILL reanalysis Short Baseline Reactor Experiments(Yves Déclais)

  16. a) Bugey II program ( 1985-1988) Bugey I bkgd >> ILL bkgd !!  internal lead suspected to produce spallation neutron (veto inefficiencies, photo-production) • internal lead removed • measurement campaign with various shielding configuration •  no reactor correlated bkgd observed • Burnup measurement  model validated R18.3/13.6 = 0.993 .021stat .021syst Rmeasured/expected = 0.995 .005stat .069syst • M. Talby Thesis Marseille University, 5/5/88 • H. de Kerret, Moriond jan. 88 / LPC-88-09 Using Schreckenbach 1985 ( At 13.6 m ) Short Baseline Reactor Experiments(Yves Déclais)

  17. Background Signal (rate per day ) SRP 346.0  2.7 63.8  4.1 Single neutron (ncd) BUGEY 25.3  0.7 37.7  2.0 SRP 49.7  1.0 3.66  1.67 Double neutrons (ccd) BUGEY 1.4  0.2 2.45  0.48 RBugey = 0.96  0.23 (1995) b)  Deuterium improved analysis and setup • Improving the analysis ( Nucl. Phys. A396(1983)469 ) • Anticoincidnce selection for ccd • Using the measurement with protons at SRP (11.2 m) RSRP = 0.62  0.16  0.69  0.18 • Improving the bkgd rejection SRP shutdown  detector moved to Bugey (18m) Short Baseline Reactor Experiments(Yves Déclais) Phys Rev C, 59, 1780, 1999

  18. c) ILL reanalysis • thesis M. L. Sanaa, Rabat University • Appl. Radiat. Isot. Vol46, n°6/7, 449, 1995 • 1990: • correction for Pth underestimated (1.095) • new βspectra (Schrekenbach 1984) : +5% • neutron lifetime (926 sec  889 sec) : +4% • Xsection correction (P. Vogel) : - 2% • Full simulation of the detector with the Bugey tools R= 0.955  3.35 % 0.832  3.35 % • Integrated neutron efficiency: • ILL 25.6  2.0 % • Bugey1 : 26.2  0.9 % • (same detectors) • Ongoing test of the reactor-detector distance • Reactor core evolution < 2cm • Geodesic measurement in progress Short Baseline Reactor Experiments(Yves Déclais)

  19. Conclusions on the first batch of anomalies: • Deuterium and Bugey I : improving the experimental setup led to vanishing the anomalies • ILL becomes an intriguing anomaly: • parameters mostly defined by the wiggles observed on the energy spectrum ratio • reinforced by the normalization correction Short Baseline Reactor Experiments(Yves Déclais)

  20. Systematical studies Search for oscillation at larger distances 1985-1996 Measurements performed at several distances to cancel uncertainties from the reactor neutrinos spectrum • Gosgen • Krasnoyarsk • Rovno • SRP mobile experiment • Bugey 3 & 4 Short Baseline Reactor Experiments(Yves Déclais)

  21. ‘carbon copy’ of the ILL detector: • target cells from ILL experiment •  with β+ localisation • new He3 chambers with localisation •  reducing the accidental bkgd • measurements at 37.9m, 45.9m, 64.7m •  dismountable setup Bkgd reduction: 2 1) Gosgen experiment 1981-1986 Phys. Rev. D34,2621 ,1986 Short Baseline Reactor Experiments(Yves Déclais)

  22. 2) Krasnoyarsk experiments 1985-1994 Entrance of the underground facility • 3 reactors: Pu production site  pure 235U fissions • underground site  700 mwe • integral type detector  only neutrons are detected • measurements performed at distances: • 32.8 m and 92.3 m (1987) • 57. m , 57.6 m , 231.4 m (1990) N57m = 114.5  1.09 N231m = 8.07  1.4 Bkgd = 159.4  1.5 Rate ( /105 sec.) R (57m/231m) = 0.86  0.15 Target : 458.4 kg PE 90 3He counters (low bkgd) R (measured/expected) = 0.99  0.05 using Schreck. 1985 and the measurement @ 57m JETP Lett. , 59-6, March 1994 Short Baseline Reactor Experiments(Yves Déclais)

  23. 3) ROVNO experiments 1985-1994 • VVR power plant , ~1400 Mw • 2 detectors at distance : • 12.15 m (12x12 counters) • 18.34 m (16x16 counters) • Integral type detector N12m = 1338 N18m = 1161 Bkgd = 210112m , 293118m Rate ( /105 sec.) R (12m/18m) = 0.976  0.02 (stat)  .015 (syst) R (measured/expected) = 0.985  0.038 using Schreck. 1985 and the measurement @ 18m JETP Lett. , 54-5 , 1991 JETP Lett. , 55-10, 1992 Short Baseline Reactor Experiments(Yves Déclais)

  24. R(1a/1b)= .97 .01(stat) .02(syst) R(d2/d1)= 1.07 .02(stat) .03(syst) 3) Savannah River experiment 1985-1994 • Pu production site (1800 Mw)  pure 235U fissions • homogeneous detector : • Gd Loaded LS (275 l., Xylene based) • mobile setup : • measurements at distances 18m and 24 m. R (mea./expec.) = 0.987  0.6% (stat)  3.7% (syst) = 1.055 1.0% (stat)  3.7% (syst) using Schreck. 1985 Phys. Rev. D, 53-11, 6054, 1996 Short Baseline Reactor Experiments(Yves Déclais)

  25. Neutron capture energy Neutron capture PSD 4) Bugey III program 1985-1994 • Bugey site : 4 power reactors, 2800 Mwth each • segmented, homogeneous 6Li loaded LS detector • 3 identical modules, movable • 1 module installed at 15m from reactor 5 • 2 modules installed at 40m from reactor 5 • (95m from reactor 4) Nucl Phys B434(1995)503 Short Baseline Reactor Experiments(Yves Déclais)

  26. Ratio to the expected spectrum ( syst error : 5% ) R15m = 0.988  0.004 (stat) R40m = 0.994  0.010 (stat) R95m = 0.915  0.132 (stat) using Schreck. 1985, 1989 Short Baseline Reactor Experiments(Yves Déclais)

  27. High precision benchmark 1 : Shape of the energy spectrum ‘Comparison of anti-neutrino reactor spectrum models with the Bugey3 measurements’ B. Achkar et al, Phys. Lett. B 374 (1996) • Model used : • 238U : calculations from Klapdor (1982) • 235U, 239Pu, 241Pu - Schreckenbach 1985, 1989 Energy scale x 1.004 In agreement with the new calculations of the reactor neutrino spectrum Short Baseline Reactor Experiments(Yves Déclais)

  28. CHOOZ proposal : systematical uncertainties. High precision benchmark 2 : Absolute normalisation of the neutrino flux ‘Study of reactor antineutrino interaction with proton at Bugey nuclear power plant Y. Déclais et al, Phys. Lett. B 338 (1994) Bugey 4 Goal : reducing the systematical error related to the neutrino flux for the CHOOZ experiment, avoiding the construction of a near detector Short Baseline Reactor Experiments(Yves Déclais)

  29. R = flux measured/flux expected RRovno = 0.985 .028stat .027syst RBugey = 0.987 .014stat .027syst Error on theoretical predictions Bugey 4 strategy : a) scaling between reactors • Use the same detector (WIND integral detector) near 2 power reactors •  Validation of the scaling procedure between 2 reactors independently of the systematics from the detector (including the Xsection) • Reactor core evolution : Burnup • Thermal power  fission rate • Neutrino spectra Caveat: there could be some compensation/correlation between these 3 parameters Before the RNA era The same procedure will be used for the CHOOZ analysis Short Baseline Reactor Experiments(Yves Déclais)

  30. full simulation package of the neutrino source : • the geometrical structure of the core • the initial configuration & burnup of each fuel element • all the measurements of the neutron flux (every month) • interpolation between measurements based on the data from the external neutron chambers (real time data) Short Baseline Reactor Experiments(Yves Déclais)

  31. Detailed study: ‘Uncertainties in the Anti-neutrino production at Nuclear Reactors’ Djurcic et al , arXiv:0808.0747 • Pth error : 0.51% ( 0.45% systematic, 0.25 % reactor-to-reactor) • errors propagation (correlation, cancellation) in the fission rate calculations  signal rate uncertainty ~0.76%  0.59% Fission rate from Thermal power measurement & Isotopic evolution EDF documentation Pth =  WGv(i) – ΔPr(i) • Enthalpic balance • of each steam generator • (secondary loop) • Measured parameters: • Vapor pressure, Ture & flow • Water Ture & enthalpy Bilan of the losses and intake Inside the primary loop (~12 Mw : 1.3%) Error on WGv(i) : 0.512 %  100% Pmax 0.531 %  50% Pmax 0.752 %  25% Pmax Caveat: substracting the residual power from irradiated fuel components & delayed  emission <<1% Kopeikin et al , IAE-6026/2 Short Baseline Reactor Experiments(Yves Déclais)

  32.  bkgd Bugey 4 strategy : b) scaling from WIND to CHOOZ detectors • The normalisation is defined • by the Detector Calibration: • σ(Np) = 0.5% working volume measured with PU-Li & Sb-Be neutron sources to check the simulation • neutron = 0.549  0.003 (0.5%) using tagged 252Cf source Identical protocol than in the ROVNO exp. Short Baseline Reactor Experiments(Yves Déclais)

  33. CHOOZ detector original concept: ‘the target mass is defined by the mass of the Gd Loaded Liquid Scintillator ‘ now used by all reactor experiments (Double Chooz, Daya Bay, RENO) ~ full β+ efficiency  similar to the integral detector  identical calibration protocol used in Bugey4/ROVNO for the neutron detection efficiency neutron = .796 overall = .698 Implicitly the CHOOZ result is obtained by comparing the measured flux at 15m @ Bugey (Bugey4 , 1.4%) and at 1km • Subtracting automatically the sterile component … if any ! • not sensitive for Δm² > ~ 2eV² Cautiously, the scaling have been applied in a conservative way: CHOOZ publi : Short Baseline Reactor Experiments(Yves Déclais)

  34. Discussing the CHOOZ result In a more optimistic way .. Comparing the measured rate in the CHOOZ & Bugey4 detectors 1.4 % ( Bugey4 stat accuracy) 0.6  0.3 % 2.28 2.22 % Short Baseline Reactor Experiments(Yves Déclais)

  35. New inversion for β- spectra  ~+3% (D. Lhuillier talk ) • Compilation & renormalization : • new fluxes • updated Xsection Best fit : μ = 0.943±0.023 ILL • 3 hypothesis : • common bias in all experiments !!! • short distance oscillation into sterile state • overestimation of the β spectra ? • dispersion of meas. for 235U : 56 % Let’s wait for Klaus Schreckenbach talk Th. Lasserre, EPS meeting this summer Short Baseline Reactor Experiments(Yves Déclais)

  36. Thank you for your attention Short Baseline Reactor Experiments(Yves Déclais)

More Related