1 / 67

ANOVA: Graphical

ANOVA: Graphical. Cereal Example: nknw677.sas. Y = number of cases of cereal sold (CASES) X = design of the cereal package (PKGDES) r = 4 (there were 4 designs tested) n i = 5, 5, 4, 5 (one store had a fire) n T = 19. Cereal Example: input. data cereal;

arama
Download Presentation

ANOVA: Graphical

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ANOVA: Graphical

  2. Cereal Example: nknw677.sas Y = number of cases of cereal sold (CASES) X = design of the cereal package (PKGDES) r = 4 (there were 4 designs tested) ni = 5, 5, 4, 5 (one store had a fire) nT = 19

  3. Cereal Example: input data cereal; infile‘H:\My Documents\Stat 512\CH16TA01.DAT'; input cases pkgdes store; procprintdata=cereal; run;

  4. Cereal Example: Scatterplot title1h=3'Types of packaging of Cereal'; title2h=2'Scatterplot'; axis1label=(h=2); axis2label=(h=2angle=90); symbol1v=circle i=nonec=purple; procgplotdata=cereal; plot cases*pkgdes /haxis=axis1 vaxis=axis2; run;

  5. Cereal Example: ANOVA procglmdata=cereal; classpkgdes; model cases=pkgdes/xpxinversesolution; meanspkgdes; run;

  6. Cereal Example: Means procmeansdata=cereal; var cases; bypkgdes; outputout=cerealmeansmean=avcases; procprintdata=cerealmeans; run; title2h=2'plot of means'; symbol1v=circle i=join; procgplotdata=cerealmeans; plotavcases*pkgdes/haxis=axis1 vaxis=axis2; run;

  7. Cereal Example: Means (cont)

  8. ANOVA Table

  9. ANOVA test

  10. Cereal Example: ANOVA table procglmdata=cereal; classpkgdes; model cases=pkgdes; run;

  11. Cereal Example: Design Matrix

  12. Cereal Example: Inverse procglmdata=cereal; classpkgdes; model cases=pkgdes/ xpxinversesolution; meanspkgdes; run;

  13. Cereal Example: /xpx

  14. Cereal Example: /inverse

  15. Cereal Example: /solution

  16. Cereal Example: ANOVA

  17. Cereal Example: Means (nknw698.sas) procmeansdata=cereal printalltypes; classpkgdes; var cases; outputout=cerealmeansmean=mclass; run; The MEANS Procedure

  18. Cereal Example: Means (cont) procprintdata=cerealmeans; run;

  19. Cereal Example: Explanatory Variables data cereal; set cereal; x1=(pkgdeseq1)-(pkgdeseq4); x2=(pkgdeseq2)-(pkgdeseq4); x3=(pkgdeseq3)-(pkgdeseq4); procprintdata=cereal; run;

  20. Cereal Example: Explanatory Variables (cont)

  21. Cereal Example: Regression procregdata=cereal; model cases=x1 x2 x3; run;

  22. Cereal Example: Regression (cont)

  23. Cereal Example: ANOVA procglmdata=cereal; classpkgdes; model cases=pkgdes; run;

  24. Cereal Example: Comparison Regression ANOVA

  25. Cereal Example: Regression (cont)

  26. Cereal Example: Means procmeansdata=cereal printalltypes; classpkgdes; var cases; outputout=cerealmeansmean=mclass; run; The MEANS Procedure

  27. Cereal Example: nknw677a.sas Y = number of cases of cereal sold (CASES) X = design of the cereal package (PKGDES) r = 4 (there were 4 designs tested) ni = 5, 5, 4, 5 (one store had a fire) nT = 19

  28. Cereal Example: Plotting Means title1h=3'Types of packaging of Cereal'; procglmdata=cereal; classpkgdes; model cases=pkgdes; outputout=cerealmeans p=means; run; title2h=2'plot of means'; axis1label=(h=2); axis2label=(h=2angle=90); symbol1v=circle i=nonec=blue; symbol2v=nonei=join c=red; procgplotdata=cerealmeans; plot cases*pkgdes means*pkgdes/overlayhaxis=axis1 vaxis=axis2; run;

  29. Cereal Example: Means (cont)

  30. Cereal Example: CI (1) (nknw711.sas) procmeansdata=cereal meanstdstderrclmmaxdec=2; classpkgdes; var cases; run; The MEANS Procedure

  31. Cereal Example: CI (2) procglmdata=cereal; classpkgdes; model cases=pkgdes; meanspkgdes/tclm; run; The GLM Procedure t Confidence Intervals for cases

  32. Cereal Example: CI

  33. Cereal Example: CI Bonferroni Correction procglmdata=cereal; classpkgdes; model cases=pkgdes; meanspkgdes/bonclm; run; The GLM Procedure Bonferroni t Confidence Intervals for cases

  34. Cereal Example: CI – Bonferroni Correction

  35. Cereal Example: Significance Test procmeansdata=cereal meanstdstderrtprobtmaxdec=2; classpkgdes; var cases; run;

  36. Cereal Example: CI for i - j procglmdata=cereal; classpkgdes; model cases=pkgdes; meanspkgdes/cldifflsdtukeybonscheffedunnett("2"); meanspkgdes/linestukey; run;

  37. Cereal Example: CI for i - j - LSD t Tests (LSD) for cases

  38. Cereal Example: CI for i - j – LSD (cont)

  39. Cereal Example: CI for i - j - Tukey Tukey's Studentized Range (HSD) Test for cases

  40. Cereal Example: CI for i - j - Scheffé Scheffe's Test for cases

  41. Cereal Example: CI for i - j - Bonferroni Bonferroni (Dunn) t Tests for cases

  42. Cereal Example: CI for i - j - Dunnett Dunnett's t Tests for cases

  43. Cereal Example: CI for i - j – Tukey (lines)

  44. Cereal Example: Contrasts procglmdata=cereal; classpkgdes; model cases = pkgdes; contrast'(u1+u2)/2-(u3+u4)/2' pkgdes .5.5 -.5 -.5; estimate'(u1+u2)/2-(u3+u4)/2' pkgdes.5.5 -.5 -.5; run;

  45. Cereal Example: Multiple Contrasts procglmdata=cereal; classpkgdes; model cases = pkgdes; contrast'u1-(u2+u3+u4)/3' pkgdes 1-.3333-.3333-.3333; estimate'u1-(u2+u3+u4)/3'pkgdes3 -1 -1 -1/divisor=3; contrast'u2=u3=u4'pkgdes01 -10, pkgdes001 -1; run;

  46. Training Example: (nknw742.sas) Y = number of acceptable pieces X = hours of training (6 hrs, 8 hrs, 10 hrs, 12 hrs) n = 7

  47. Training Example: input data training; infile'I:\My Documents\STAT 512\CH17TA06.DAT'; input product trainhrs; procprintdata=training; run; data training; set training; hrs=2*trainhrs+4; hrs2=hrs*hrs; procprintdata=training; run;

  48. Training Example: ANOVA procglmdata=training; classtrainhrs; model product=hrs trainhrs / solution; run;

  49. Training Example: ANOVA (cont)

  50. Training Example: Scatterplot Title1h=3'product vs. hrs'; axis1label=(h=2); axis2label=(h=2angle=90); symbol1v = circle i = rl; procgplotdata=training; plot product*hrs/haxis=axis1 vaxis=axis2; run;

More Related