180 likes | 356 Views
Elza Akhmetzyanova ( Samara St . Univ .). QFTHEP’2004. Effective two-Higgs-doublet potential and radiative corrections to Higgs bosons masses in the MSSM. 1. Effective THDM potential with explicit CP violation. 2. Effective Higgs self-couplings. 3 . Higgs bosons masses. 4 . Summary.
E N D
Elza Akhmetzyanova (Samara St. Univ.) QFTHEP’2004 Effective two-Higgs-doublet potential and radiative corrections to Higgs bosons masses in the MSSM 1. Effective THDM potential with explicit CP violation 2. Effective Higgs self-couplings 3. Higgs bosons masses 4. Summary [hep-ph/0405264]
The most general renormalized SU(2)xU(1) invariant potential U(Φ1,Φ2) = ─ μ12(Φ1+Φ1) ─ μ22(Φ2+Φ2) ─ μ12 2(Φ1+Φ2) ─ (μ122)*(Φ2+Φ1) +λ1 (Φ1+Φ1)2 + λ2 (Φ2+Φ2)2 + λ3 (Φ1+Φ1)(Φ2+Φ2)+ λ4 (Φ1+Φ2) (Φ2+Φ1) + λ5/2(Φ1+Φ2)(Φ1+Φ2)+ (λ5)*/2(Φ2+Φ1)(Φ2+Φ1) + λ6(Φ1+Φ1)(Φ1+Φ2)+ (λ6)*(Φ1+Φ2) (Φ1+Φ1) + λ7 (Φ2+Φ2)(Φ1+Φ2)+ (λ7)*(Φ2+Φ2) (Φ2+Φ1) δ12 δ5 δ6 δ7 SU(2)xU(1)xUPQ(1)xZ2 SU(2)xU(1)xZ2 SU(2)xU(1)
Effective Potential Approach for CPV parameters The SUSY relations on coupling constants at the renormalization point μ=MSUSY (RG boundary conditions): CP invariant Higgs potential at the tree level.
Quantum effects of stop and sbottom couple strongly to the Higgs sector –> change the SUSY boundary conditions below MSUSY. And their phases can induce CPV effects via radiative corrections. 1-loop (t, b) conributions: Complex soft SUSY breaking parameters At,b, μ can induce CPV
Scalar sector for MSSM The main contribution to self-couplings due to 3rd generation Yukawa couplings. The corresponding potential with CPV sources where
Effective potential parameters [1] H.E.Haber, R.Hempfling, Phys.Rev, D48 (1993) 4280 [2] A.Pilaftsis, C.E.M.Wagner, Nucl.Phys. B553 (1999) 3
Effective potential parameters [1] H.E.Haber, R.Hempfling, Phys.Rev, D48 (1993) 4280 [2] A.Pilaftsis, C.E.M.Wagner, Nucl.Phys. B553 (1999) 3
Effective potential parameters: corrections [2] A.Pilaftsis, C.E.M.Wagner, Nucl.Phys. B553 (1999) 3
Diagonalization in the local minimum In order to remove the nondiagonal terms hA and HA we perform the orthogonal transformation in the h, H, A sector where the mass matrix
Physical states of Higgs bosons And we get the physical Higgs bosons h1, h2, h3 without a definite CP parity. The squared masses of Higgs bosons are In CP conserving limit
Mass of the lightest Higgs boson our FeynHiggs CPsuperH [3] M.Frank, S.Heinemeyer, W.Hollik, G.Weiglein //hep-ph/0212037 [4] J.S.Lee, A.Pilaftsis, M.Carena, et.al. CPsuperH. (2004)
Higgs boson masses our FeynHiggs CPsuperH [3] M.Frank, S.Heinemeyer, W.Hollik, G.Weiglein //hep-ph/0212037 [4] J.S.Lee, A.Pilaftsis, M.Carena, et.al. CPsuperH. (2004)
Neutral Higgs boson masses h, H, A and the matrix elements (mH±=300GeV)
Neutral Higgs boson masses h, H, A and the matrix elements (mH±=180 GeV)
Summary 1. Complex soft SUSY breaking parameters induce complex parameters in the effective THDM Higgs potential, which violates CP explicitly. 2. Complex parameters in the effective THDM Higgs potential induce Higgs bosons mixing in the THDM. Determining the local minimum conditions and the diagonalization conditions we get the physical spectrum of Higgs bosons without definite CP properties.
Summary 3. Higgs bosons mixing in the THDM affects couplings with fermions and gauge bosons. 4. Comparison with CPsuperH and FeynHiggs demonstrates good qualitative agreement for predictions but quantitative difference especially for small mass of light charge (or light neutral) Higgs boson, when large CP mixing takes place.